
Chapter 4

The Computer Continuum 1

Chapter 4:
Computer Languages,

Algorithms and Program
Development

How do computers know what
we want them to do?

Computer Languages, Algorithms
and Program Development

n In this lecture:

• What makes up a language and how do we use language to communicate
with each other and with computers?

• How did computer programming languages evolve?
• How do computers understand what we are telling them to do?
• What are the steps involved in building a program?

Chapter 4

The Computer Continuum 2

Communicating with
a Computer

n Communication cycle

• One complete unit of communication.

– An idea to be sent.
– An encoder.
– A sender.
– A medium.
– A receiver.
– A decoder.

– A response.

Speaker encodes
information

Listener decodes
information

Listener returns
feedback to speaker

Communicating with
a Computer

n Substituting a computer for
one of the people in the
communication process.
• Process is basically

the same.
– Response may be symbols

on the monitor.

User encodes
information Computer decodes

information

Computer
returns results

to user

Chapter 4

The Computer Continuum 3

Communicating with
a Computer

n Between two people:
• The person can’t hear you.
• The phone connection is broken in

mid-call.
• One person speaks only French,

while the other only Japanese.

n Between a person and a computer:
• The power was suddenly

interrupted.
• An internal wire became

disconnected.
• A keyboard malfunctioned.

A breakdown can occur any place along the cycle...

When communicating instructions to a computer, areas
of difficulty are often part of the encoding and decoding
process.

Communicating with
a Computer

n Programming languages bridge the gap between human thought
processes and computer binary circuitry.
• Programming language: A series of specifically defined commands

designed by human programmers to give directions to digital comp uters.
– Commands are written as sets of instructions, called programs .
– All programming language instructions must be expressed in binary

code before the computer can perform them.

Chapter 4

The Computer Continuum 4

The Role of Languages
in Communication

n Three fundamental elements of language that contribute to the
success or failure of the communication cycle:
• Semantics
• Syntax
• Participants

The Role of Languages
in Communication

n Human language:
• Refers to the meaning of what is

being said.
• Words often pick up multiple

meanings.
• Phrases sometimes have idiomatic

meanings:
– let sleeping dogs lie

(don’t aggravate the situation
by “putting in your two
cents”)

n Computer language:
• Refers to the specific command

you wish the computer to perform.
– Input, Output, Print
– Each command has a very

specific meaning.
– Computers associate one

meaning with one computer
command.

• The nice thing about computer
languages is the semantics is
mostly the same

n Semantics : Refers to meaning.

Chapter 4

The Computer Continuum 5

The Role of Languages
in Communication

n Human language:
• Refers to rules governing

grammatical structure.
– Pluralization, tense, agreement

of subject and verb,
pronunciation, and gender.

• Humans tolerate the use of
language.

– How many ways can you say
no? Do they have the same
meaning?

n Computer language:
• Refers to rules governing exact

spelling and punctuation, plus:
– Formatting, repetition,

subdivision of tasks,
identification of variables,
definition of memory spaces.

• Computers do not tolerate syntax
errors.

n Computer languages tend to have
slightly different, but similar,
syntax

n Syntax: Refers to form, or structure.

The Role of Languages
in Communication

n Human language:
• In the communication cycle, humans

can respond in more than one way.
– Body language
– Facial expressions
– Laughter
– human speech

n Computer language:
• People use programming

languages.
• Programs must be

translated into binary code.
• Computers respond by

performing the task or not!

n Participants :
• Human languages are used by people to communicate with

each other.
• Programming languages are used by people to communicate

with machines.

Chapter 4

The Computer Continuum 6

The Programming
Language Continuum

n In the Beginning...Early computers consisted of
special-purpose computing hardware.
• Each computer was designed to perform a particular

arithmetic task or set of tasks.
• Skilled engineers had to manipulate parts of the computer’s

hardware directly.
– Some computers required input via relay switches

• Engineer needed to position electrical relay switches manually.
– Others required programs to be hardwired.

• Hardwiring: Using solder to create circuit boards with
connections needed to perform a specific task.

The Programming
Language Continuum

n In the beginning… To use a computer, you needed to know how to program
it.

n Today… People no longer need to know how to program in order to use the
computer.

n To see how this was accomplished, lets investigate how programming
languages evolved.
• First Generation - Machine Language (code)
• Second Generation - Assembly Language
• Third Generation - People-Oriented Programming Languages
• Fourth Generation - Non-Procedural Languages
• Fifth Generation - Natural Languages

Chapter 4

The Computer Continuum 7

The Programming
Language Continuum

n First Generation - Machine Language (code)
• Machine language programs were made up of instructions written in

binary code.
– This is the “native” language of the computer.
– Each instruction had two parts: Operation code, Operand

• Operation code (Opcode): The command part of a computer
instruction.

• Operand: The address of a specific location in the computer’s
memory.

– Hardware dependent: Could be performed by only one type of
computer with a particular CPU.

The Programming
Language Continuum

n Second Generation - Assembly Language
• Assembly language programs are made up of instructions written in

mnemonics.
» Mnemonics: Uses convenient alphabetic abbreviations to

represent operation codes, and abstract symbols to represent
operands.

» Each instruction had two parts: Operation code, Operand
» Hardware dependent.
» Because programs are not written in 1s and 0s, the computer

must first translate the program before it can be executed.

READ num1
READ num2
LOAD num1
ADD num2
STORE sum
PRINT sum
STOP

Chapter 4

The Computer Continuum 8

The Programming
Language Continuum

n Third Generation - People-Oriented Programs
• Instructions in these languages are called statements.

– High-level languages : Use statements that resemble English phrases
combined with mathematical terms needed to express the problem or
task being programmed.

– Transportable: NOT-Hardware dependent.
– Because programs are not written in 1s and 0s, the computer must

first translate the program before it can be executed.

• Examples: COBOL, FORTRAN, Basic (old version not new), Pascal, C

The Programming
Language Continuum

n Pascal Example: Read in two numbers, add them, and print them
out.

Program sum2(input,output);
var
num1,num2,sum : integer;

begin
read(num1,num2);
sum:=num1+num2;
writeln(sum)

end.

Chapter 4

The Computer Continuum 9

The Programming
Language Continuum

n Fourth Generation - Non-Procedural Languages
• Programming-like systems aimed at simplifying the programmers task of

imparting instructions to a computer.
• Many are associated with specific application packages.

– Query Languages:
– Report Writers:
– Application Generators:

– For example, the Microsoft Office suite supports macros and ways to
generate reports

The Programming
Language Continuum

n Fourth Generation - Non-Procedural Languages (cont.)
• Object-Oriented Languages : A language that expresses a computer

problem as a series of objects a system contains, the behaviors of those
objects, and how the objects interact with each other.

– Object: Any entity contained within a system.
• Examples:

» A window on your screen.
» A list of names you wish to organize.

» An entity that is made up of individual parts.
– Some popular examples: C++, Java, Smalltalk, Eiffel.

Chapter 4

The Computer Continuum 10

The Programming
Language Continuum

n Fifth Generation - Natural Languages
• Natural-Language: Languages that use ordinary conversation in one’s

own language.
– Research and experimentation toward this goal is being done.

• Intelligent compilers are now being developed to translate natural
language (spoken) programs into structured machine-coded
instructions that can be executed by computers.

• Effortless, error-free natural language programs are still some
distance into the future.

Assembled, Compiled, or
Interpreted Languages

n All programs must be translated before their instructions can be
executed.

n Computer languages can be grouped according to which
translation process is used to convert the instructions into binary
code:
• Assemblers
• Interpreters
• Compilers

Chapter 4

The Computer Continuum 11

Assembled, Compiled, or
Interpreted Languages

n Assembled languages:
• Assembler: a program used to translate Assembly language programs.
• Produces one line of binary code per original program statement.

– The entire program is assembled before the program is sent to the
computer for execution.

– Similar to the machine code exercise we did in class
• Example of 6502 assembly language and machine code:

– JSR SWAP 20 1C 1F
– LDA X2 A5 04
– LDY =$80 A0 80
– STY X2 49 80

Assembled, Compiled, or
Interpreted Languages

n Interpreted Languages:
• Interpreter: A program used to translate high-level programs.
• Translates one line of the program into binary code at a time:

• An instruction is fetched from the original source code.
• The Interpreter checks the single instruction for errors. (If an

error is found, translation and execution ceases. Otherwise…)
• The instruction is translated into binary code.

• The binary coded instruction is executed.
• The fetch and execute process repeats for the entire program.

• Examples: Lisp, Prolog, Java, JavaScript (used on Web Pages)

Chapter 4

The Computer Continuum 12

Interpreted Programs

X=3
X=X+1
…

Source Code
Interpreter 11011101

Machine Language
Statement

ExecuteNext statement

Assembled, Compiled, or
Interpreted Languages

n Compiled languages:
• Compiler: a program used to translate high-level programs.
• Translates the entire program into binary code before anything is sent to

the CPU for execution.
– The translation process for a compiled program:

• First, the Compiler checks the entire program for syntax errors in the
original source code .

• Next, it translates all of the instructions into binary code.
» Two versions of the same program exist: the original source code

version, and the binary code version (object code).
• Last, the CPU attempts execution only after the programmer requests that

the program be executed.

• Examples: C, C++, C#, Java, Pascal, Visual Basic

Chapter 4

The Computer Continuum 13

Assembly/Compiling Process

Human Brain English Algorithm

High Level Language
(C++, C, Pascal…)

Machine Code

compiler

Low Level Language -
Assembly

assembler

If there are multiple source files that make up a final program,
these source programs must then be linked to produce a final
executable.

Compilers

n Compilers on different machines generally produce different machine code,
targeted for that specific system.
• Mac and PC machine code different, can’t execute programs compiled for the

other

• Note that under this model, compilation and execution are two different
processes. During compilation, the compiler program runs and translates source
code into machine code and finally into an executable program. The compiler
then exits. During execution, the compiled program is loaded from disk into
primary memory and then executed.

C++ source

PC Compiler

Mac Compiler

PC Machine Code

Mac Machine Code

Chapter 4

The Computer Continuum 14

Interpreted vs. Compiled

n What happens if you modify the source on a compiled programming language
(without recompiling) vs. an interpreted programming language and execute
it?

n Compiled
• Runs faster
• Typically has more capabilities

– Optimize
– More instructions available

• Best choice for complex, large programs that need to be fast

n Interpreted
• Slower, often easier to develop
• Allows runtime flexibility (e.g. self-modifying programs, memory management)
• Some are designed for the web

Java?

n The astute members of the audience might have noticed that
Java was listed under both Interpreted and Compiled!

n A Java compiler translates source code into machine
independent “byte code” that can be executed by the java
“virtual machine”.
• Java Virtual machine doesn’t actually exist – it is simply a specification

of how a machine would operate if it did exist in terms of what machine
code it understands.

• Interpreters must then be written on the different architectures that can
understand the virtual machine and convert it to the native machine code

Public class Foo {
if (e.target=xyz) then

this.hide();
}

Java
compiler

01010001
01010010

Mac Interpreter

PC Interpreter

PalmPilot Interpreter

Chapter 4

The Computer Continuum 15

Java Benefits

n The great benefit of Java is that if someone (e.g. Sun) can write
interpreters of java byte code for different platforms, then code
can be compiled once and then run on any other type of
machine.
• No more hassles of developing different code for different platforms

n Sound too good to be true?
• Unfortunately there is still a bit of variability among Java interpreters, so

some programs will operate differently on different platforms.

• The goal is to have a single uniform byte code that can run on any
arbitrary type of machine architecture

• Java programs, due to the interpreted nature, are also much slower than
native programs (e.g., those written in C++)

Building a Program

n Whatever type of problem needs to be solved, a careful thought out plan of
attack, called an algorithm, is needed before a computer solution can be
determined.

1) Developing the algorithm.
2) Writing the program.

3) Documenting the program.
4) Testing and debugging the program.

The danger is to jump straight to writing the code without thinking
about how to solve the problem first!

Chapter 4

The Computer Continuum 16

Building a Program

n 1) Developing the algorithm.
• Algorithm: A detailed description of the exact methods used for solving

a particular problem.
• To develop the algorithm, the programmer needs to ask:

– What data has to be fed into the computer?
– What information do I want to get out of the computer?
– Logic: Planning the processing of the program. It contains the

instructions that cause the input data to be turned into the desired
output data.

Building a Program

n A step-by-step program plan is created during the planning
stage.

n The three major notations for planning detailed algorithms:
• Flowchart: Series of visual symbols representing the logical flow of a

program.
• Nassi-Schneidermann charts: Uses specific shapes and symbols to

represent different types of program statements.
• Pseudocode: A verbal shorthand method that closely resembles a

programming language, but does not have to follow a rigid syntax
structure.

Chapter 4

The Computer Continuum 17

Building a Program

Start

Count Money

Do you
have more than

$10.00?
Go out

Go home

End

No

Yes

Repeat until
money < $10.00

Go out

If money > $10.00Y N

Go home

1. If money < $10.00 then go home
Else Go out

2. Count money
3. Go to number 1

Nassi-Schneidermann chart:

Pseudocode:

Flow chart:

Stop

Example Impact of Algorithms

n Searching a sorted list of names for some target name
• E.g. looking up a phone number for someone

n First algorithm: linear search
• Compare first name in the list
• If it matches, return match, otherwise continue with the next name in the list
• This works fine, but is inefficient for very large lists

n Second algorithm : binary search
• Start in the middle of the list
• If target name = name in the middle, return match
• If target name < name in the middle, repeat process on first half of the list
• If target name > name in the middle, repeat process on second half of the list

• Eliminates half of the list each time, much faster than linear search for long lists
(lg N vs. N for a list with N names)

n Algorithm can have a huge impact on efficiency and ease of imple mentation
for the solution!

Chapter 4

The Computer Continuum 18

Building a Program

n 2) Writing the Program
• If analysis and planning have been thoroughly done, translating the plan

into a programming language should be a quick and easy task.

n 3) Documenting the Program
• During both the algorithm development and program writing stages ,

explanations called documentation are added to the code.
– Helps users as well as programmers understand the exact processes to

be performed.

Building a Program

n 4) Testing and Debugging the Program.
• The program must be free of syntax errors .
• The program must be free of logic errors .
• The program must be reliable. (produces correct results)
• The program must be robust. (able to detect execution errors)

• Alpha testing: Testing within the company.
• Beta testing: Testing under a wider set of conditions using

“sophisticated” users from outside the company.

Chapter 4

The Computer Continuum 19

Software Development:
A Broader View

Type of program Number of Lines
The compiler for a language with a

limited instruction set. Tens of thousands of lines

A full-featured word processor. Hundreds of thousands of lines

A microcomputer operating system. Approximately 2,000,000 lines
A military weapon management program.

(controlling missiles, for example) Several million lines

Measures of effort spent on real- life programs:
Comparing programs by size:

Software Development:
A Broader View

• Measures of effort spent on real- life programs: Comparing
programs by time:
• Commercial software is seldom written by individuals.

– Person-months - equivalent to one person working forty hours a
week for four weeks.

– Person-years - equivalent to one person working for twelve months.

– Team of 5 working 40 hours for 8 weeks = ten person-months.

n Much more on these issues in the software engineering course

Chapter 4

The Computer Continuum 20

Short History of PL’s

n 1958: Algol defined, the first high-level structured language with a systematic
syntax. Lacked data types. FORTRAN was one of the reasons Algol was
invented, as IBM owned FORTRAN and the international committee wanted
a new universal language.

n 1965: Multics – Multiplexed Information and Computing Service.
Honeywell mainframe timesharing OS. Precursor to Unix.

n 1969: Unix – OS for DEC PDP-7, Written in BCPL (Basic Combined
Programming Language) and B by Ken Thompson at Bell Labs, with lots of
assembly language. You can think of B as being similar to C, but without
types (which we will discuss later).

n 1970: Pascal designated as a successor to Algol, defined by Niklaus Wirth at
ETH in Zurich. Very formal, structured, well-defined language.

n 1970’s: Ada programming language developed by Dept. of Defense. Based
initially on Pascal. Powerful, but complicated programming language.

n 1972: Dennis Ritchie at Bell Labs creates C, successor to B, Unix ported to
C. “Modern C” was complete by 1973.

Short History of PL’s

n 1978: Kernighan & Ritchie publish “Programming in C”, growth and
popularity mirror the growth of Unix systems.

n 1979: Bjarne Stroustrup at Bell Labs begins work on C++. Note that the
name “D” was avoided! C++ was selected as somewhat of a humorous name,
since “++” is an operator in the C programming language to increment a
value by one. Therefore this name suggests an enhanced or incre mented
version of C. C++ contains added features for object-oriented programming
and data abstraction.

n 1983: Various versions of C emerge, and ANSI C work begins.
n 1989: ANSI and Standard C library. Use of Pascal declining.
n 1998: ANSI and Standard C++ adopted.
n 1995: Java goes public, which some people regard as the successor to C++.

Began as “Oak” within Sun.
n 2001: Under development: C# (C-Sharp), language promoted by Microsoft

with similarities between C, C++, Java, and Visual Basic

