Introduction to Computer Science

CS A101

What is Computer Science?

• First, some misconceptions.
• **Misconception 1:** I can put together my own PC, am good with Windows, and can surf the net with ease, so I know CS.
• **Misconception 2:** Computer science is the study of how to write computer programs.
• **Misconception 3:** Computer science is the study of the uses and applications of computers and software.
Computer Science

- Computer science is the study of algorithms, including
 - Their formal and mathematical properties
 - Their hardware realizations
 - Their linguistic realizations
 - Their applications

What Will We Cover?

- Broad survey of computer science topics, some depth in programming, more on breadth
- Topics
 - History
 - Data representation
 - Computer architecture (software perspective)
 - Operating Systems
 - Networking
 - Algorithms
 - Theory
 - Database Systems
 - Programming (more depth than other topics)
Terminology

• **Algorithm**: A set of steps that defines how a task is performed
• **Program**: A representation of an algorithm
• **Programming**: The process of developing a program
• **Software**: Programs and algorithms
• **Hardware**: Physical equipment

History of Algorithms

• The study of algorithms was originally a subject in mathematics.
• Early examples of algorithms
 – Long division algorithm
 – Euclidean Algorithm
• **Gödel's Incompleteness Theorem**: Some problems cannot be solved by algorithms.
Example: Euclid’s algorithm

Description: This algorithm assumes that its input consists of two positive integers and proceeds to compute the greatest common divisor of these two values.

Procedure:

Step 1. Assign M and N the value of the larger and smaller of the two input values, respectively.

Step 2. Divide M by N, and call the remainder R.

Step 3. If R is not 0, then assign M the value of N, assign N the value of R, and return to step 2; otherwise, the greatest common divisor is the value currently assigned to N.

Central Questions of Computer Science

- Which problems can be solved by algorithmic processes?
- How can algorithm discovery be made easier?
- How can techniques of representing and communicating algorithms be improved?
- How can characteristics of different algorithms be analyzed and compared?
Central Questions of Computer Science
(continued)

• How can algorithms be used to manipulate information?
• How can algorithms be applied to produce intelligent behavior?
• How does the application of algorithms affect society?

The central role of algorithms in computer science
Abstraction

- **Abstraction**: The distinction between the external properties of an entity and the details of the entity’s internal composition

- **Abstract tool**: A “component” that can be used without concern for the component’s internal properties

- **Abstraction simplifies many aspects of computing and makes it possible to build complex systems**

A Brief History of Computing

- Roots in Mathematical Sciences and computational devices
 - Abacus, counting device, state
 - Blaise Pascal, the Pascaline 1642
 - Manual gear system to add numbers
 - Charles Babbage
 - Difference Engine designed in 1812
 - Could not be built using the tools of the era
 - Eventually built later using modern tools
 - Analytic Engine 1823, steam-powered more general computational device with conditional controls
 - Also too complex to build in the 19th century
Roots of Computing...

• Herman Hollerith’s Tabulating Machine
 – Former MIT lecturer, developed a machine to read punch cards
 – Inspired by a train conductor to punch tickets
 – Used in the 1890 US Census
 – Company became IBM in 1924

Roots of Computing...

• 1940, Conrad Zuse’s Z3
 – First computing machine to use binary code, precursor to modern digital computers
• 1944, Harvard Mark I, Howard Aiken
• 1946, ENIAC, first all digital computer
 – Ushered in the “Mainframe” era of computing
 – “First Generation”
 – 18,000 vacuum tubes

Similar to a lightbulb but plate in middle controls flow of electrical current
• On the ENIAC, all programming was done at the digital logic level.
• Programming the computer involved moving plugs and wires.

Roots of Computing...

• 1945: John von Neumann defines his architecture for an “automatic computing system”
 – Basis for architecture of modern computing
 • Computer accepts input
 • Processes data using a CPU
 • Stores data in memory
 – Stored program technique, storing instructions with data in memory
 • Produces output
• Led to the EDVAC and UNIVAC computers
Roots of Computing...

1951, UNIVAC, Universal Automatic Computer

When we say there is a “bug” in the program, we mean it doesn’t work right... the term originated from an actual moth found in the UNIVAC by Grace Hopper

The Second Generation: Transistors

• Invented 1947, Bell Labs: Bardeen, Shockley, Brattain
• 1958 -1964
• Transistors generate less heat
• Transistors are smaller, faster, and more reliable
• First transistors smaller than a dime
• UNIVAC II built using transistors
The Third Generation: Integrated Circuits (IC)

- 1964 - 1990
- Multiple transistors on a single chip
- IBM 360 - First mainframe to use IC
- DEC PDP-11 - First minicomputer
- End of mainframe era, on to the minicomputer era

Integrated Circuit

- Invented at TI by Jack Kilby, Bob Noyce
- "What we didn't realize then was that the integrated circuit would reduce the cost of electronic functions by a factor of a million to one, nothing had ever done that for anything before" - Jack Kilby
Minicomputer Era

• Made possible by DEC and Data General Corporation, IBM
• Medium-sized computer, e.g. DEC-PDP
• Much less expensive than mainframes, computing more accessible to smaller organizations
• Used transistors with integrated circuits

Personal Computer Era

• First microprocessor, Intel 4004 in 1971
• MITS Altair “kit” in 1975
• Apple in 1976
• IBM PC in 1981 using 8086
• Macintosh in 1984, introduced the GUI (Graphical User Interface) we still use today
 – Some critics: Don Norman on complexity
 – Next interface delegation instead of direct manipulation?
Today: Internetworking Era?

- Computer as communication device across networks
- World Wide Web, Internet
- Publishing, data sharing, real-time communications

Supercomputers

- The most powerful and expensive computers
- Contain numerous very fast processors that work in parallel
 - IBM Roadrunner
 - 1,105 TeraFlops (Floating Point Operations/Second)
 - 12,960 IBM PowerXCell 8i and 6,480 AMD Opteron dual-core processors
 - At 2 TeraFlops, could do in 1 second what would take every man, woman, and child 125 years work nonstop on hand calculators
- Used by researchers and scientists to solve very complex problems
- Cost millions of dollars
CPU Clock Speeds

Moore’s Law

1965: Computing power doubles ~ every 18 months
Chip Production

- Ingot of purified silicon – 1 meter long, sliced into thin wafers
- Chips are etched – much like photography
 - UV light through multiple masks
 - Circuits laid down through mask
- Process takes about 3 months

Fabrication

“wires” – chemical or vapor deposition
The Shrinking Chip

- Human Hair: 100 microns wide
 - 1 micron is 1 millionth of a meter
- Bacterium: 5 microns
- Virus: 0.8 microns
- Early microprocessors: 10-15 micron technology
- 1997: 0.35 Micron
- 1998: 0.25 Micron
- 1999: 0.18 Micron
- 2001: 0.13 Micron
- 2003: 0.09 Micron
- 2007: 0.065 Micron
- 2009: 0.045 Micron
- Physical limits believed to be around 0.016 Microns, should reach it around 2018

Silicon Devices are Nanotechnology

Transistor for 90 nm process
Influenza virus

Source: CDC