
Chapter 3 – 4.2, Data Types, Arithmetic, Strings, Input

Data Types

Visual Basic distinguishes between a number of fundamental data types. Of these, the
ones we will use most commonly are:

 Integer
 Long
 Double
 String
 Boolean

The table below summarizes the different types:

An Integer is a positive or negative number with no value past the decimal point. Note
the limitation on the range of values it can hold. If we allocate more storage space (e.g.,
more bytes) then we can represent larger numbers.

The Long data type uses 8 bytes of storage instead of 4 like the Integer, so it can
represent much larger values.

Similarly, VB has two commonly used floating point values: Single and Double. These
data types are used to represent real numbers. The Single uses 4 bytes and the Double
uses 8 bytes, so the Double can store larger values than the single.

If double has a larger data range than integer, and can store floating point numbers, you
might wonder why we don’t just always use a double. We could do this, but it would be
wasteful – the double format takes up more space than an integer. Also it is slower to

perform arithmetic operations on a number stored as double than it is on a number stored
as integer. The integer data type is better to use if that is all your application needs.

Booleans are used to represent True or False. These are the only two values that are
allowed. Booleans are useful in programming due to their ability to select a course of
action based upon some outcome that is either true or false, so we will use Booleans
extensively in decision-making.

Strings consist of textual data and are enclosed in double-quotes. Strings are represented
as a sequence of bit patterns that match to alphanumeric values. For example, consider
the following mapping for the letters A, B, and C:

 A 01000001
 B 01000010
 C 01000011

To store the string “CAB” we would simply concatenate all of these codes:

 01000011 01000001 01000010

Note that there is a difference between a string of numbers, and a number such as an
Integer. Consider the string “0” and the number 0. The String “0” is represented by the
bit pattern 00110000 while the integer 0 is represented by 00000000. Similarly, the
string “10” would be represented as 00110001 00110000 while the integer 10 is
represented as 00001010.

Strings are simply a sequence of encoded bit patterns, while integers use the binary
number format to represent values. We will often convert back and forth between String
and Number data types.

Numbers

We have already seen a little bit of working with numbers – for example, setting the size
or position of a window. When we put a numeric value directly into the program, these
are called numeric literals.

VB.NET allows us to perform standard arithmetic operations:

 Arithmetic Operator VB.NET Symbol
 Addition +
 Subtraction -
 Multiplication *
 Division / (floating point)
 Division \ (integer, truncation)
 Exponent ^
 Modulus mod

Here are some examples of arithmetic operations and outputting the result to the console:

 Console.WriteLine(3 + 2)
 Console.WriteLine (3 - 2)
 Console.WriteLine (5 * 2 * 10)
 Console.WriteLine (14 mod 5)
 Console.WriteLine (9 mod 4)
 Console.WriteLine (10 / 2)
 Console.WriteLine (11 / 2)

Console.WriteLine(11 \ 2)
 Console.WriteLine (1 / 2)
 Console.WriteLine (2 ^ 3)
 Console.WriteLine ((2^3)*3.1)

The results are:

 5
 1
 100
 4
 1
 5
 5.5
 5
 0.5
 8
 24.8

Extremely large numbers will be displayed in scientific notation, where the letter E refers
to an exponent of 10E :

 Console.WriteLine(2^50)

outputs: 1.1259E+15

Variables

In math problems quantities are referred to by names. For example, in physics, there is
the well known equation:

 Force = Mass × Acceleration

By substituting two known quantities we can solve for the third. When we refer to
quantities or values with a name, these are called variables. Variables must begin with a
letter and may contain numbers or underscores but not other characters.

To use variables we must tell VB.NET what data type our variables should be. We do
this using the Dim statement, which “Dimensions” a storage location for us using the
format:

Dim varName as DataType

The Dim statement causes the computer to set aside a location in memory with the name
varName. DataType can take on many different types, such as Integer, Single, Double,
String, etc.

If varName is a numeric variable, the Dim statement also places the number zero in that
memory location. (We say that zero is the initial value or default value of the variable.)
Strings are set to blank text.

To assign or copy a value into a variable, use the = or assignment operator:

 myVar = newValue

We can also assign an initial value when we declare a variable:

 Dim myVar as Integer = 10

Here are some examples using numeric variables:

 Dim dblVal as Double
 Dim intVal as Integer

 dblVal = 5 * 2 * 10
 intVal = 5 * 2 * 10
 Console.WriteLine(dblVal)
 Console.WriteLine(intVal)
 dblVal = 11 / 2
 intVal = 11 / 2
 Console.WriteLine(dblVal)
 Console.WriteLine(intVal)
 dblVal = 1 / 2
 intVal = 1 / 2
 Console.WriteLine(dblVal)
 Console.WriteLine(intVal)

Output:
100
100
5.5
6
0.5
0

VB.NET will round floating point values up or down when converted to an integer
(although 0.5 seems to be an exception).

A common operation is to increment the value of a variable. One way to do this is via:

 intVal = intVal + 1

This is common enough that there are shortcuts:

x = x+ y �� x += y
x = x* y �� x *= y
x = x - y �� x -= y
x = x/ y �� x /= y

Precedence Rules

The precedence rules of arithmetic apply to arithmetic expressions in a program. That is,
the order of execution of an expression that contains more than one operation is
determined by the precedence rules of arithmetic. These rules state that:

1. parentheses have the highest precedence
2. multiplication, division, and modulus have the next highest precedence
3. addition and subtraction have the lowest precedence.

Because parentheses have the highest precedence, they can be used to change the order in
which operations are executed. When operators have the same precedence, order is left
to right.

Examples:

 Dim x As Integer Value stored in X
 x = 1 + 2 + 6 / 6 4
 x = (1 + 2 + 3) / 6 1
 x = 2 * 3 + 4 * 5 26
 x = 2 / 4 * 4 2
 x = 2 / (4 * 4) 0
 x = 10 Mod 2 + 1 1

In general it is a good idea to use parenthesis if there is any possibility of confusion.
There are a number of built-in math functions that are useful with numbers. Here are just
a few:

 Math.Sqrt(number) returns the square root of number

Ex:

 Console.WriteLine(Math.Sqrt(9)) ‘ Displays 3

 Dim d as Double
 d = Math.Sqrt(25)
 Console.WriteLine(d) ‘ Displays 5
 Console.WriteLine(Math.Sqrt(-1)) ‘ Displays NaN

Math.Round(number) returns the number rounded up/down

Ex: Math.Round(2.7) returns 3

Math.Abs(number) returns the absolute value of number

 Ex: Math.Abs(-4) returns 4

There are many more, for sin, cos, tan, atan, exp, log, etc.

When we have many variables of the same type it can sometimes be tedious to declare
each one individually. VB.NET allows us to declare multiple variables of the same type
at once, for example:

 Dim a, b as Double
 Dim a as Double, b as Integer
 Dim c as Double = 2, b as integer = 10

Variable Scope

When we DIM a variable inside an event, the variable only “exists” within the scope of
the event. This means we are free to define other variables of the same name in different
events (which is often quite useful to keep variables from stomping on each other’s
values!) For example

 Private Sub MyClick1(..) Handles MyButton.Click
 Dim i As Integer
 i = 10 / 3
 End Sub

 Private Sub MyClick2(..) Handles MyButton2.Click
 Dim i As Integer
 i = 30
 End Sub

The variable i in the two subroutines is a different i; the first exists only within the scope
of MyClick1 and the second only exists within the scope of MyClick2.

More on Strings

A string variable is a variable that refers to a sequence of textual characters. A string
variable is declared by using the data type of String:

 Dim s as String

To assign a literal value to a string, the value must be in double quotes. The following
shows how to add three strings to a listbox:

 Dim day1 As String
 Dim day2 As String
 day1 = "Monday"
 day2 = "Tuesday"
 Console.WriteLine(day1)
 Console.WriteLine (day2)
 Console.WriteLine ("Wednesday")

This outputs “Monday”, “Tuesday”, and “Wednesday”.

Two strings can be combined to form a new string consisting of the strings joined
together. The joining operation is called concatenation and is represented by an
ampersand (&).

For example, the following outputs “hello world”:

 Dim s1 as String = “hello”
 Dim s2 as String = “world”
 Console.WriteLine(s1 & “ “ & s2)

This outputs: hello world

Note that if we output: Console.WriteLine(s1 & s2)

Then we would get: helloworld

Sometimes with strings we can end up with very long lines of code. The line will scroll
off toward the right. You can keep on typing to make a long line, but an alternate method

is to continue the line on the next line. To do that, use the line continuation character. A
long line of code can be continued on another line by using underscore (_) preceded by
a space:

msg = "640K ought to be enough " & _
"for anybody. (Bill Gates, 1981)"

is the same as:

 msg = “640K ought to be enough “ & “for anybody. (Bill Gates, 1981)”

String Methods and Properties

There are a number of useful string methods and properties. Just like control objects, like
list boxes, that have methods and properties, strings are also objects and thus have their
own properties and methods. They are accessed just like the properties and methods:
use the name of the string variable followed by a dot, then the method name.

 str.Length() ; returns number of characters in the string
 str.ToUpper() ; returns the string with all letters in uppercase
 does not change the original string, returns a copy
 str.ToLower() ; returns the string with all letters in lowercase
 does not change the original string, returns a copy
 str.Trim() ; returns the string with leading and trailing whitespace
 removed. Whitespace is blanks, tabs, cr’s, etc.
 str.Substring(m,n) ; returns the substring of str starting at character m
 and fetching the next n characters. M starts at 0
 for the first character! If n is left off, then the remainder
 of the string is returned starting at position m.

Here are some examples:

 Dim s As String = "eat big macs "
 Console.WriteLine(s.Length())
 Console.WriteLine(s.ToUpper())
 Console.WriteLine(s & "!")
 s = s.Trim()
 Console.WriteLine(s & "!")
 Console.WriteLine(s.Substring(0, 3))
 Console.WriteLine(s.Substring(4))
 Console.WriteLine(s.Substring(20))

Output:

15
EAT BIG MACS
eat big macs !
eat big macs!
eat
big macs
CRASH! Error message (do you know why?)

On occasion you may be interested in generating the empty string, or a string with
nothing in it. This is a string of length 0. It is referenced by simply “” or two double
quotes with nothing in between.

Finally, if you would like to create a string that contains the “ character itself, use two
“”’s:

Wrong:
 s = “Dan Quayle said, “I love California; I practically grew up in Phoenix.””

 What is the problem?

Right:

 s = “Dan Quayle said, “”I love California; I practically grew up in Phoenix.”””

Using Text Boxes for Input and Output

It turns out that any text property of a control is also a string, so what we just learned
about strings also applies to the controls! A particularly useful example is to manipulate
the content of text boxes.

For example, say that we create a text box control named txtBox. Whatever the user
enters into the textbox is accessible as a string via txtBox.Text . For example:

 Dim s as String
 s = txtBox.Text.ToUpper()
 txtBox.Text = s

This changes the txtBox.Text value to be all upper case letters.

Text Boxes provide a nice way to provide textual input and output to your program.
However, recall that other items also have a text property, such as Me.Text, which will
change the caption on the title bar of your application.

Because the contents of a text box is always a string, sometimes you must convert the
input or output if you are working with numeric data. You have the following functions
available for type-casting:

 CDbl(string) ; Returns the string converted to a double
 CInt(string) ; Returns the string converted to an integer
 CStr(number) ; Returns the number converted a string

For example, the following increments the value in a text box by 1:
 Dim i as Integer

 i = CInt(txtBox.Text)
 i = i + 1
 txtBox.Text = CStr(i)

Options

It turns out that VB.NET actually allows you to perform these operations without the
conversion functions:

 i = txtBox.Text ‘ implicitly converts the string to a number

However, this practice is not recommended because it can often lead to errors when the
programmer really didn’t intend to convert the variables. For this reason, VB.NET
includes a way to require type-casting. At the top of the code, add the line:

 Option strict on

This forces type-casting or a program will not compile.

Another recommended option is option explicit:

 Option explicit on

This forces the programmer to define any variables that are going to be used, another
potentially common error (consider a typo in a variable name; without option explicit on
VB.NET will just create a new variable instead of using the one you may intend).

You can put both options next to each other at the top of your code and it is highly
recommended you always use both:

 Option strict on
 Option explicit on

Comments

As your code gets more complex, it is a good idea to add comments. You can add a
comment to your code by using the ‘ character. Anything from the ‘ character to the end
of the line will be ignored. If you neglect to add comments, it is very common to forget
how your code works when you go back and look at it later!

Another common use of comments is to “comment out” blocks of code. For example, if
you insert code for testing purposes or if code is not working properly, you can comment
it out and have the compiler ignore it. However, the code will still be there if you want to
use it again later without having to type it in again – just uncomment the code.

VB.NET has a button to comment and uncomment blocks of code:

Highlight the text to comment and click the icon shown above on the left.
Highlight the text to uncomment and click the icon shown above on the right.

In-class Exercise:

It is recommended that you maintain your training heart rate during an aerobic workout.
Your training heart rate is computed as:

 0.7(220-a)+(0.3*r)

where a is your age in years and r is your resting heart rate. Write a program to compute
the training heart rate as shown below:

Example:

You are running a marathon (26.2 miles) and would like to know what your finishing
time will be if you run a particular pace. Most runners calculate pace in terms of
minutes per mile. So for example, let’s say you can run at 7 minutes and 30 seconds per
mile. Write a program that calculates the finishing time and outputs the answer in hours,
minutes, and seconds.

Input:
 Distance : 26.2
 PaceMinutes: 7
 PaceSeconds: 30
Output:
 3 hours, 16 minutes, 30 seconds

Here is one algorithm to solve this problem:

1. Express pace in terms of seconds per mile, call this SecsPerMile
2. Multiply SecsPerMile * 26.2 to get the total number of seconds to finish.

Call this result TotalSeconds.
3. There are 60 seconds per minute and 60 minutes per hour, for a total of 60*60

= 3600 seconds per hour. If we divide TotalSeconds by 3600 and throw away
the remainder, this is how many hours it takes to finish.

4. TotalSeconds mod 3600 gives us the number of seconds leftover after the
hours have been accounted for. If we divide this value by 60, it gives us the
number of minutes, i.e. (TotalSeconds mod 3600) / 60

5. TotalSeconds mod 3600 gives us the number of seconds leftover after the
hours have been accounted for. If we mod this value by 60, it gives us the
number of seconds leftover. (We could also divide by 60, but that doesn’t
change the result), i.e. (TotalSeconds mod 3600) % 60

6. Output the values we calculated!

In-Class Exercise: Write the code to implement the algorithm given above.

In-Class Exercise: Write a program that takes as input an amount between 1 and 99
which is the number of cents we would like to give change. The program should output
the minimum number of quarters, dimes, nickels, and pennies to give as change assuming
you have an adequate number of each coin.

For example, for 48 cents the program should output;
 1 quarter
 2 dimes
 0 nickels

3 pennies

First write pseudocode for the algorithm to solve the problem. Here is high-level
pseudocode:

• Dispense max number of quarters and re-calculate new amount of change
• Dispense max number of dimes and re-calculate new amount of change
• Dispense max number of nickels and re-calculate new amount of change
• Dispense remaining number of pennies

Input and Output

We have already seen how to get input via textboxes and we can also output data via
textboxes, listboxes, or the console window.

We will not cover this in class but to format numbers, currency, or percents, there is a
format function (for example, FormatNumber(1.23456,1) turns the number into only a
single decimal point, 1.2). We can also format to pad numbers with spaces.

Another way to input and output data is through “pop-up” windows. To input data
through an input dialog box, use a statement of the form:

 stringVar = InputBox(prompt, title)

To output data via a popup use a statement of the form:

 MessageBox.Show(string)

for example:

 Dim s as String
 s = InputBox(“Enter your name”, “Name”)
 MessageBox.Show(“You entered “ & s & “.”)

Generates a window like the following:

Whatever the user types into the text area is stored into variable s when the user presses
OK. The output is then shown in a message box:

If the user presses cancel, then the string returned is empty.
There are additional options on the InputBox and MessageBox to set the title, icon, and
buttons that appear on the pop-up window. See the VB.NET reference for more
information.

