
CS109
PictureBox and Timer Controls

Let’s take a little break from arrays and discuss two new controls. The picturebox control
is used to display an image on the form. The Timer control is used to generate events in
time intervals. Both controls are described briefly in chapter 9.

The PictureBox control is used to display graphics. It can display shapes we draw
ourselves and also common image formats such as JPG, GIF, BMP, etc.

Drawing Line Graphics

To experiment with drawing graphics within a picturebox, add a PictureBox control to
the form. In the VB.NET Code section, go to the events for the PictureBox and select the
Paint event:

The Paint event is automatically invoked whenever the PictureBox needs to be redrawn.
For example, if the form is minimized, dragged, or occluded, then when the form is
activated then the Paint event will be invoked. By placing the drawing code in the Paint
event it will always be updated correctly. If we placed the code somewhere else and the
window was obscured, it may not be redrawn correctly when the obscuring item is moved
out of the way.

We can now put code here that will draw whatever we like on top of the form. Just like
in standard graphics format, the origin is the upper left corner. The x coordinates increase
to the right, and the y coordinates increase down toward the bottom.

Here is some sample code we can add to the Paint event to draw various shapes on the
screen:

Private Sub PictureBox1_Paint(ByVal sender As Object, ByVal e As
System.Windows.Forms.PaintEventArgs) Handles PictureBox1.Paint
 Dim g As Graphics
 ' Get the graphics object for the event (i.e. the PictureBox)
 g = e.Graphics

 ' Draw a red rect of width 1 at Width=50, Height=80 at coord 1,20
 g.DrawRectangle(Pens.Red, 10, 20, 50, 80)

 ' Make a new pen of width 4
 Dim thickPurplePen As Pen = New Pen(Color.Purple, 4)
 ' Ellipse in purple, width 4, within bounding rectangle at 50,10
 g.DrawEllipse(thickPurplePen, 50, 10, 40, 30)

 ' Draw a line from 10,10 to 50,50 of width 1
 g.DrawLine(Pens.MediumSeaGreen, 10, 10, 50, 50)

 ' To fill in a shape we must use a brush
 Dim bru As New SolidBrush(Color.GreenYellow)
 ' Fill in the rectangle
 g.FillRectangle(Brushes.GreenYellow, 100, 100, 50, 20)

 ' Draw part of a pie
 g.FillPie(Brushes.IndianRed, 130, 20, 100, 100, 30, 60)

 ' Draw the text "Abstract Art" in font Arial, size 12, in Indigo
 g.DrawString("Abstract Art", New System.Drawing.Font("Arial", 12), _
 Brushes.Indigo, 50, 140)
End Sub

First, we capture the Graphics object from the event arguments. The Graphics object is
attached to the Form, so anything we draw on the graphics object will be displayed on the
entire Form. We could attach code to the Paint event of specific controls to only paint
within those controls, if we wish.

Next, we create a red pen and draw a rectangle using that pen. The rectangle takes the
coordinates of the upper left corner then the width and height.

An ellipse is drawn in a similar fashion, by specifying the bounding rectangle that holds
the ellipse. This time we create a new pen object. The new pen object can specify the
width of the item to draw.

Next we draw a single line using the MediumSeaGreen pen.

Next we draw a solid rectangle using a Brush object. The Brush in this case is a solid
color, but it is possible to create brushes that are hatched, texture, etc. Finally we draw
part of a Pie slice using a red brush.

Finally we draw text toward the bottom of the screen using DrawString. You can pick
whichever font you like that is on the system.

The picture created is shown below:

There are many other drawing tools available; see the text and online help for more
details.

Note that we should always draw the items in the Paint event, or the items won’t be
refreshed properly if the screen needs to be re-drawn. For example, if the above code
was placed in a Button Click event, the items would be drawn when the button is clicked
but not when the form needs to be refreshed.

Working with Images

A pictureBox can also be used to display stored graphical images, such as JPG, GIF,
BMP, PNG, and many other file formats. For example, such images might be created in
a Paint Program and stored on the disk.

To place a static image in a picture box, drag the picture box onto the form and then
select the “Image” property:

Click the “…” which will bring up a file dialog to search for an image. Find some image
on your system. It should then be displayed inside your picturebox control. You may
need to resize the control so that the entire image fits. In the picture below, I have
selected the “sample.jpg” image that comes with Windows 2000 in the “My
Documents/My Pictures” folder.

At this point you can run the application and it will display an image on the form. This is
all you would need to do if you want to include static images in your application. The
image data will be stored as part of the assembly of the executable, so you don’t need to
include the actual image file with your application.

Next let’s look at how you can programmatically set what is displayed in the picture box.

We can load an image from disk by setting the Image property of the picturebox to an
image object. Here is an example:

PictureBox1.Image = Image.FromFile("c:\myimage.jpg")

When this code is executed, it will load the file “c:\myimage.jpg” and display it in the
image.

If a lot of images are going to be displayed, a common technique is to load all of the
images into memory when the program starts, and then display the loaded images later
when required by the program. To do this we can create an Image object that can store a
loaded image from disk. The following example shows how to load two images, and
then display them when the appropriate button is clicked:

The form above has a picturebox in the middle and two buttons.

The code looks like the following and assumes that there are two files on the disk named
“picture1.bmp” and “picture2.bmp”

Public Class Form1
 Inherits System.Windows.Forms.Form
 Dim image1, image2 As Image

 ' Load images from disk into variables when the form is started
 Private Sub Form1_Load(…) Handles MyBase.Load
 image1 = Image.FromFile("c:\picture1.bmp")
 image2 = Image.FromFile("c:\picture2.bmp")
 End Sub

 ' Display image1
 Private Sub btnShow1_Click(…) Handles btnShow1.Click
 PictureBox1.Image = image1
 End Sub

 ' Display image2
 Private Sub btnShow2_Click(…) Handles btnShow2.Click
 PictureBox1.Image = image2
 End Sub
End Class

Since class variables are accessible in any subroutine in the form, we first load the images
into two class variables when the program starts. Then to display them we set the Image
property of the picturebox to the appropriate class variable.

If we had a lot of images to load, we could use an array of Images instead. Here is an
example for our array of two images:

Public Class Form1
 Inherits System.Windows.Forms.Form
 Dim imageArray(2) As Image

 Private Sub Form1_Load(…) Handles MyBase.Load
 imageArray(1) = Image.FromFile("c:\picture1.bmp")
 imageArray(2) = Image.FromFile("c:\picture2.bmp")
 End Sub

 ' Display image1
 Private Sub btnShow1_Click(…) Handles btnShow1.Click
 PictureBox1.Image = imageArray(1)
 End Sub

 ' Display image2
 Private Sub btnShow2_Click(…) Handles btnShow2.Click
 PictureBox1.Image = imageArray(2)
 End Sub
End Class

If we had 20 images, all named “picture1.bmp” up to “picture20.bmp” we could display
them as shown below.

Public Class Form1
 Inherits System.Windows.Forms.Form
 Dim imageArray(20) As Image
 Dim whichImage As Integer

 Private Sub Form1_Load(…) Handles MyBase.Load
 Dim i As Integer
 whichImage = 1 ' The current image to show

 For i = 1 To 20
 imageArray(i) = Image.FromFile("c:\picture" & CStr(i) _

& ".bmp")
 Next
 PictureBox1.Image = imageArray(1) ' Show image 1 now
 End Sub

 ' Display next image
 Private Sub btnShow1_Click(…) Handles btnShow1.Click
 whichImage = whichImage + 1
 If (whichImage > 20) Then
 whichImage = 1 ' Cycle back to first image if on last one
 End If
 PictureBox1.Image = imageArray(whichImage) ' Display It
 End Sub
End Class

In the Form1_Load event, we are using a loop to load twenty image files. The names of
the files are constructed by the loop; it assumes each is named picture<NUM>.bmp. To
keep track of what image is being displayed, there is a class variable called whichImage.
This variable is set to the index in the array of the current image being shown.

In the button click event, we increment the whichImage variable to move to the next
image. If we have shown the last one (i.e. we now exceed the number of images) then
cycle back to show the first image.

Timer Control

The timer control is used to execute code after some time interval has passed. Unlike all
of the other controls we have used so far, it is invisible at runtime. VB.NET places
invisible controls in a pane at the bottom of the screen instead of within your form.

The properties of the timer control are shown in the figure below:

The timer is inactive if Enabled is set to False. Once Enabled is set to true, the timer
behaves like an alarm clock. It starts counting down, using the value in the Interval
property, until it reaches zero. The value stored in the Interval property is in
milliseconds, not seconds, so if you wanted a countdown of 5 seconds then you would
store a value of 5000 in the Interval property.

The event that occurs when the timer reaches zero is the Timer1.Tick event. You can add
code to this event by double-clicking on the Timer control. The following example
initializes the timer and then displays a message after five seconds are up:

 Private Sub Timer1_Tick(…) Handles Timer1.Tick
 ' Display a message
 MsgBox("Beep!")
 End Sub

 Private Sub Button1_Click(…) Handles Button1.Click
 Timer1.Interval = 5000 ' 5000 milliseconds
 Timer1.Enabled = True ' Start the countdown!
 End Sub

After a timer “goes off” it is still enabled and resets itself back to the interval value. In
the above example, every five seconds a message box will be displayed. If we ever want
to disable the timer, we can just set the Enabled property to false.

Here is another example that displays a countdown, in seconds, until we reach zero:

 Private Sub Button1_Click(…) Handles Button1.Click
 Timer1.Interval = 1000 ' 1 second intervals
 Timer1.Enabled = True ' Start countdown
 End Sub

 Private Sub Timer1_Tick(…) Handles Timer1.Tick
 Dim count As Integer

 count = CInt(txtCounter.Text) ' Get current count value
 count -= 1 ' Subtract one
 txtCounter.Text = CStr(count) ' Display new count
 If (count = 0) Then ' Time expired
 Timer1.Enabled = False ' Turn timer off
 MsgBox("Beep beep!")
 End If
 End Sub

How could we make the countdown go twice as fast?

What might happen if we switch the order of statements in the If statement to:

 If (count = 0) Then ' Time expired
 MsgBox("Beep beep!")
 Timer1.Enabled = False ' Turn timer off
 End If

Can you figure out what is going on?

