
1

Interrupts, Buses

Chapter 6.2.5, 8.2-8.3

Introduction to Interrupts
• Interrupts are a mechanism by which other modules

(e.g. I/O) may interrupt normal sequence of
processing

• Four general classes of interrupts
– Terms: Traps when initiated by system, Interrupt when

initiated by programmer
– Program - e.g. overflow, division by zero
– Timer, internal timer, used in pre-emptive multi- tasking
– I/O - from I/O controller
– Hardware failure, e.g. memory parity error

• Particularly useful when one module is much slower
than another, e.g. disk access (milliseconds) vs. CPU
(microseconds or faster)

2

Interrupt Examples

4 = code for pre-write, 5 = code for post-write, * = interrupt

Interrupt Cycle
• Added to instruction cycle
• Processor checks for interrupt

– Indicated by an interrupt signal

• If no interrupt, fetch next instruction
• If interrupt pending:

– Suspend execution of current program
– Save context (what does this mean?)
– Set PC to start address of interrupt handler routine
– Process interrupt, i.e. execute interrupt handler code
– Restore context and continue interrupted program

3

Branch Table for Handlers
How do we know where to go to execute the interrupt handler?
Lookup in a branch table, also called the interrupt vector

Instruction Cycle (with
Interrupts) - State Diagram

4

Multiple Interrupts

• Disable interrupts – Sequential Processing
– Processor will ignore further interrupts whilst

processing one interrupt
– Interrupts remain pending and are checked after

first interrupt has been processed
– Interrupts handled in sequence as they occur

• Define priorities – Nested Processing
– Low priority interrupts can be interrupted by higher

priority interrupts
– When higher priority interrupt has been processed,

processor returns to previous interrupt

Multiple Interrupts - Sequential

Disabled Interrupts – Nice and Simple

5

Multiple Interrupts - Nested

How to handle state with an arbitrary number of interrupts?

Sample Time Sequence of
Multiple Interrupts

User Program Printer ISR Comm ISR Disk ISR

t=10

t=40

t=15

t=25
t=25

t=35

t=0

Priority 2 Priority 5 Priority 4

Disk can’t interrupt higher priority Comm
Note: Often low numbers are higher priority

6

Buses

• There are a number of possible
interconnection systems. The most common
structure is the bus

• Single and multiple BUS structures are most
common

• e.g. Control/Address/Data bus (PC)

What is a Bus?

• A communication pathway connecting two or
more devices

• Usually broadcast
– Everyone listens, must share the medium
– Master – can read/write exclusively, only one master
– Slave – everyone else. Can monitor data but not

produce
• Often grouped

– A number of channels in one bus
– e.g. 32 bit data bus is 32 separate single bit channels

• Power lines may not be shown
• Three major buses: data, address, control

7

Bus Interconnection Scheme

Data Bus

• Carries data
– Remember that there is no difference between

“data” and “instruction” at this level

• Width is a key determinant of performance
– 8, 16, 32, 64, 128 bit
– Generally we like the data bus width to match

the register word size
• Famous non-examples include 8088, 386SX

8

Address bus

• Identify the source or destination of data
– In general, the address specifies a specific memory

address or a specific I/O port
• e.g. CPU needs to read an instruction (data) from a

given location in memory
• Bus width determines maximum memory capacity

of system
– 8086 has 20 bit address bus but 16 bit word size for 64k

directly addressable address space
– But it could address up to 1MB using a segmented

memory model

Control Bus
• Control and timing information

– Determines what modules can use the data and address
lines

– If a module wants to send data, it must (1) obtain
permission to use the bus, and (2) transfer data – which
might be a request for another module to send data

• We will skip how arbitration for control is performed

• Typical control lines
– Memory read - Memory write
– I/O read - I/O write
– Interrupt request - Interrupt ACK
– Bus Request - Bus Grant
– Clock signals

9

Big and Yellow?

• What do buses look like?
– Parallel lines on circuit boards
– Ribbon cables
– Strip connectors on mother boards

• e.g. PCI

– Sets of wires

• Limited by physical proximity – time
delays, fan out, attenuation are all factors
for long buses

Single Bus Problems
• Lots of devices on one bus leads to:

– Propagation delays
• Long data paths mean that co-ordination of bus use can adversely affect

performance – bus skew, data arrives at slightly different times
• If aggregate data transfer approaches bus capacity. Could increase bus

width, but expensive

– Device speed
• Bus can’t transmit data faster than the slowest device
• Slowest device may determine bus speed!

– Consider a high-speed network module and a slow serial port on the same
bus; must run at slow serial port speed so it can process data directed for it

– Power problems
• Most systems use multiple buses to overcome these

problems

10

Traditional (ISA) with cache

Buffers data
transfers
between
system,
expansion bus

This approach breaks down as I/O devices need higher performance

High Performance Bus –
Mezzanine Architecture

Addresses higher speed I/O devices by moving up in the hierarchy

11

Direct Memory Access

Tying together buses with interrupts!

12

