I nterrupts, Buses

Chapter 6.2.5, 8.2-8.3

Introduction to Interrupts

* Interrupts are a mechanism by which other modules
(e.g. 1/0) may interrupt normal sequence of
processing

 Four general classes of interrupts
— Terms. Traps when initiated by system, Interrupt when

initiated by programmer
— Program - e.g. overflow, division by zero
— Timer, internal timer, used in pre-emptive multi- tasking
— 1/O - from 1/O controller
— Hardware failure, e.g. memory parity error
 Particularly useful when one module is much dlower
than another, e.g. disk access (milliseconds) vs. CPU
(microseconds or faster)

Interrupt Examples

User
Program

@

=
= |

e E——

,.____________,,______
- Ly
e

N

[0 User [0 LUser 10
Program Program Program Program Program
L] —_ 1 - — 1 PR
1 | i | ”r’ =7
: @ @ 1 JIVI : @ @ : sz', : @
| 1 P | P 1
|10 1o, - J’,x.’ 0 N e *f,u/’ 0
:('umlu;md WRITE =~ 7 ! Command WRITE ") ‘," Command
- r -
| ! | L
1 — ; — |
o
: ® : J’J.rf : Jlr /
| i Lo
ENIY o4y |
kT L] I
I o [
N Lnterrupt Iy Interrupt
| -~ - = [» L
o - Handler i Handler
Ity U i T
— W L
WRITE PR & WRITE S i) &
— | s [— | ?"I"w K
LT END L END
[P 1 I
[P : .-’f I
roe !
- [
* | @ [
| | 4r
@ i
14
L * L ¥
WRITE WRITE W

(@) No intermupts

(b Interrupts; short O wait (o) Interrupts; long 1O wait

4 = code for pre-write, 5 = code for post-write, * = interrupt

Interrupt Cycle

Added to instruction cycle

Processor checks for interrupt

— Indicated by an interrupt signal

If no interrupt, fetch next instruction

If interrupt pending:

— Suspend execution of current program

— Save context (what does this mean?)

— Set PC to start address of interrupt handler routine
— Process interrupt, i.e. execute interrupt handler code
— Restore context and continue interrupted program

Branch Table for Handlers

How do we know where to go to execute the interrupt handler?
Lookup in a branch table, also called the interrupt vector

Address Contents Trap Handler
60 JUMP TO 2000 Illegal instruction
64 JUMP TO 3000 Overflow
68 JUMP TO 3600 Underflow
72 JUMP TO 5224 Zerodivide
76 JUMP TO 4180 Disk
80 JUMP TO 5364 Printer
84 JUMP TO 5908 TTY
88 JUMP TO 6048 Timer

Instruction Cycle (with
Interrupts) - State Diagram

Operand

Instructio:
operation
decoding

Operand
address
calculation,

Operand
address
calculatio

calculatior

No
interrupt

Return for string
of vector data

Instruction complete,
{eteth next instruction

Multiple Interrupts

» Disable interrupts— Sequential Processing
— Processor will ignore further interrupts whilst
processing one interrupt
— Interrupts remain pending and are checked after
first interrupt has been processed
— Interrupts handled in sequence as they occur
» Define priorities— Nested Processing
— Low priority interrupts can be interrupted by higher
priority interrupts
— When higher priority interrupt has been processed,
processor returns to previous interrupt

Multiple Interrupts - Sequential

Interrupt
User Program Handler X

-
-

i |

|
|
|
- |
|
|
|
|

~ e Interrupt
T Thme—e Handler Y

- = _

|

|

|

|

|

- |
|

|

|

~

-~
-
-~

Disabled Interrupts — Nice and Simple

Multiple Interrupts - Nested

Interrupt
User Program Handler X
= 1 |
= 1 | = |
= - I
= | LT I
= | - I
= 1 o :"\-.
= | - S .
= 1 P .
= r___‘_‘__‘—q——,__,___ll . \"'\._
S . e Interrupt
- \. - 7
= : o ~~ Handler ¥
= | o ~
= ! S 1
= | \\ |
= |
s | . .
= | S |
= | . |
s | W
= + N |
= 3

How to handle state with an arbitrary number of interrupts?

Sample Time Seguence of
Multiple Interrupts

Priority 2 Priority 5 Priority 4
User Program Printer ISR Comm ISR Disk ISR
= t=15
t=10,
_t:25
t=25
\ -
t=40 t=35

Disk can't interrupt higher priority Comm
Note: Often low numbers are higher priority

Buses

There are a number of possible
interconnection systems. The most common
structureisthe bus

Single and multiple BUS structures are most
common

e.g. Control/Address/Data bus (PC)

What 1s a Bus?

A communication pathway connecting two or
more devices

Usually broadcast

— Everyone listens, must share the medium

— Master — can read/write exclusively, only one master

— Slave—everyone else. Can monitor data but not
produce

Often grouped

— A number of channelsin one bus

— e.g. 32 bit data bus is 32 separate single bit channels
Power lines may not be shown

Three mgjor buses. data, address, control

Bus I nterconnection Scheme

CPU Memory || *++| Memory /0 o /0
L e e fne il
Control Lines
[T 1 [1] [T 1 ||||
Address Lines Bus
! [T ! | |
Data Lines
Data Bus

e Carries data
— Remember that there is no difference between
“data’ and “instruction” at thisleve
» Width is akey determinant of performance
-8, 16, 32, 64, 128 hit

— Generdly we like the data bus width to match
the register word size
» Famous non-examples include 8088, 386SX

Address bus

* |dentify the source or destination of data
— In general, the address specifies a specific memory
address or a specific I/O port
* e.g. CPU needsto read an instruction (data) from a
given location in memory
* Buswidth determines maximum memory capacity
of system
— 8086 has 20 bit address bus but 16 bit word size for 64k
directly addressable address space
— But it could address up to IMB using a segmented
memory model

Control Bus

» Control and timing information
— Determines what modules can use the data and address
lines
— If amodule wants to send data, it must (1) obtain
permission to use the bus, and (2) transfer data— which
might be a request for another module to send data
« Wewill skip how arbitration for control is performed

» Typica control lines

— Memory read - Memory write
— 1/Oread - 1/0O write
— Interrupt request - Interrupt ACK
— Bus Request - Bus Grant

— Clock signals

Big and Yellow?

» What do buses ook like?
— Pardlléel lines on circuit boards
— Ribbon cables

— Strip connectors on mother boards
* eg. PCI

— Setsof wires

 Limited by physical proximity —time
delays, fan out, attenuation are all factors
for long buses

Single Bus Problems

» Lotsof devices on one bus leads to:
— Propagation delays

* Long data paths mean that co-ordination of bus use can adversely affect
performance — bus skew, data arrives at slightly different times

« If aggregate data transfer approaches bus capacity. Could increase bus
width, but expensive
— Device speed
« Buscan't transmit data faster than the slowest device

» Slowest device may determine bus speed!

— Consider a high-speed network module and aslow seria port on the same
bus; must run at slow serial port speed so it can process data directed for it

— Power problems

* Most systems use multiple buses to overcome these
problems

Traditional (I1SA) with cache

Buffers data

Local 10 transfers

Main controller between
Memory system,
| expansion bus
[System Bus If
Metwork Expansion ..
SOSI bus interface Serial

Modem

Expans

inn Bus

This approach breaks down as I/O devices need higher performance

High Performance Bus —

Mezzanine Architecture
Addresses higher speed 1/0 devices by moving up in the hierarchy

Main
Memory
Cache -
Processor] e | System Bus |
| SCsI | | Pl3v4 | | (impllil:l | Viden | | LAN |
| High-Speed Bus |
FAX Expansion

bus interface] Serial
[]

Expansion Bus

10

Bridge

Based
Bus Ar-
chitecture

* Bridging with
dual Pentium Il
Xeon proces-
sors on Slot 2.

(Source: http://
www.intel.com.)

Hard
Disk

3200 MB/sec 3200 MB/sec
512KB-2MB 400-MHz 512KB-2ZMB
Core Cache
500 MB/sec
System Bus I I
Intel 440GX 100 MHz 2GB
AGPset 100-MHz
533 MBisec (Host Bridge) 800 MBIsec SDRAM
|| 33-MHz PCI Bus
USB #2
== pcitoISA IDE Bus #2
USB #1 Bridge
1 I_I I— 33 MB/sec | |
Snapshot
all., Camera — CD-ROM
ER LB
[0 | B4
=8 | I
w0 =
g 2 IDE Bus #1
I I ISA Bus

- T

Keyboard Audio

Direct Memory Access

Tying together buses with interrupts!

DMA Transfer from Disk to Memory

Memory

Bypasses the CPU

Disk

With DMA

DMA Flowchart for a Disk Transfer

CPU sets up disk for
DMA transfer

.
u

eea

DMA device begins
transfer independent of
CPU

’
-
#

" DMA device
L~ interrupts CPU
CPU executes M when finished

another process

12

