
CS221
Booleans, Comparison, Jump Instructions
Chapter 6

Assembly language is a great choice when it comes to working on individual bits of data.
While some languages like C and C++ include bitwise operators, several high- level
languages are missing these operations entirely (e.g. Visual Basic 6.0). At times these
operations can be quite useful. First we will describe some common bit operations, and
then discuss conditional jumps.

AND Instruction

The AND instruction performs a Boolean AND between all bits of the two operands. For
example:

 mov al, 00111011b
 and al, 00001111b

The result is that AL contains 00001011. We have “multiplied” each corresponding bit.
We have used AND for a common operation in this case, to clear out the high nibble.
Sometimes the operand we are AND’ing something with is called a bit mask because
wherever there is a zero the result is zero (masking out the original data), and wherever
we have a one, we copy the original data through the mask.

For example, consider an ASCII character. “Low” ASCII ignores the high bit; we only
need the low 7 bits and we might use the high bit for either special characters or perhaps
as a parity bit. Given an arbitrary 8 bits for a character, we could apply a mask that
removes the high bit and only retains the low bits:

 and al, 01111111b

OR Instruction

The OR instruction performs a Boolean OR between all bits of the two operands. For
example:

 mov al, 00111011b
 or al, 00001111b

As a result AL contains 00111111. We have “Added” each corresponding bit, throwing
away the carry.

A useful place for the OR instruction is to set specific bits in a status variable. For
example, lets say you want 8 different Boolean variables. You could represent these 8
booleans using the bits in AL. Set a specific bit to 1 by using OR. Set that bit to 0 by
using AND:

 or al, 00001000b ; set bit 4 to 1
 and al, 11110111b ; set bit 4 to 0

XOR Instruction

The XOR instruction results in 0 if the two bits being compared are identical, and 1 if the
two bits being compared are different. For example:

 mov al, 00111011b
 xor al, 00001111b

Results in 00110100 in al.

A special quality of XOR is that it reverses itself when applied twice. If we apply
another xor to the above sequence:

 xor al, 00001111b

Then we get back 00111011 or the original value we moved into AL in the first place.
This is sometimes used as a simple method to encode data, where the encryption key
becomes the number that we XOR everything with.

Another place XOR is useful is to reverse a status bit:

 xor al, 01000000 ; Reverses bit 7, all others stay the same

Finally, XOR can be used in a trick to swap two numbers:

 mov ax, 01010101b
 mov bx, 11110000b

 xor ax, bx ; AX contains 10100101
 xor bx, ax ; BX contains 01010101
 xor ax, bx ; AX contains 11110000

Here we were able to swap two values without the need for a temporary variable! We get
the same effect as:

 mov temp, bx
 mov bx, ax
 mov ax, temp

NOT instruction

The NOT instruction reverses all bits in an operand, changing ones to zeros and vice
versa. The result is the one’s complement. For example:

 mov al, 11110000b
 not al

AL now contains 00001111b.

NEG instruction

The NEG instruction negates a number by converting it to its twos complement. For
example:

 mov al, -1 ; contains 11111111
 neg al ; contains 00000001

Since there is one more negative value possible than positive values, there is a chance we
will have an overflow after performing a NEG operation. If this happens, the OF flag
will be set to 1.

TEST instruction

The TEST instruction performs an implied AND between two operands. Neither operand
is modified, but if any of the bits between the operands are identical, then the zero flag is
set to 0. Otherwise the zero flag is set to 1.

A common use of this instruction is to test if at least one of some specific bits are set:

 mov ah, 00001111b
 test ah, 00010001b

ZF is set to 0 since bit 0 matches.

However:

 mov ah, 00001110b
 test ah, 00010001b

The zero flag here is set to 1 since none of the bits match.

CMP Instruction

The CMP (Compare) instruction performs an implied subtraction of a source operand
from a destination operand. Neither operand is modified. The result is reflected in the
FLAGS registers. The first operand is the source, and the second is the destination.

The flags are set according to the following table for unsigned operands:

 Dest < Src Carry Flag = 1 Zero Flag = 0
 Dest = Src Carry Flag = 0 Zero Flag = 1
 Dest > Src Carry Flag = 0 Zero Flag = 0

For signed operands we have the following table:

 Dest < Src Carry Flag = ? Zero Flag <> Overflow Flag
 Dest = Src Carry Flag = 1 Zero Flag = ?
 Dest > Src Carry Flag = 0 Zero Flag = Overflow Flag

You don’t have to remember all these possible assignments to the different flags. The
CMP instruction is called compare because when used preceding one of the conditional
JUMP instructions, the jump will compare the proper flags and make the desired jump.

There are other Boolean operators, but we have covered the basic ones!

Conditional Jumps

You have already used some conditional jumps on your homework assignments. We will
look at a few more here. As you have seen, there are no high- level logic structures like
WHILE, FOR, CASE, or IF-THEN-ELSE statements in assembly. Instead we have to
create these structures ourselves with jumps, which basically amounts to GOTO
statements. (There are MACROS that we can use that model these conditional structures,
but they are turned into Jump instructions).

A conditional jump transfers control to a destination address when some kind of flag
condition becomes true. The syntax is:

 Jcond destination

There are many variants of the conditional jump. Let’s start with the General
Comparisons. These are jumps that are made based on general comparisons of various
flags. They have nothing to do with signed or unsigned numbers, but can generally be
used on unsigned numbers:

General Comparisons:

 Mnemonic Taken if
 JZ Jump if Zero ZF = 1
 JE Jump if Equal ZF = 1
 JNZ Jump if not zero ZF = 0
 JNE Jump if not equal ZF = 0
 JC Jump if carry CF = 1
 JNC Jump if not carry CF = 0
 JCXZ Jump if CX=0 CX = 0

Since CMP will set ZF to 1 if two unsigned operands are the same, then if JZ or JE is
followed by a CMP, we will take the branch if the operands are equal. Similarly, we will
take the branch if two operands of a compare are different but followed by JNZ:

 mov ax, 10
 cmp ax, 10
 je TakeBranch

 mov ax, 10
 cmp ax, 20
 jne AlsoTakeBranch

We also have jumps based specifically on comparing unsigned values:

 Mnemonic Taken if
 JA Jump if Above (o1 > o2) ZF = 0 and CF = 0
 JAE Jump if above or equal (o1 >= o2) CF = 0
 JB Jump if below (o1 < o2) CF = 1
 JBE Jump if below or equal (o1 <= o2) CF =1 or ZF = 1

These jumps should be made directly after a CMP instruction. If we perform any other
intermediate instructions, they might change the value of the flags.

Finally, we also have jumps based specifically on comparing signed values:

 Mnemonic Taken if
 JG Jump if Greater (o1 > o2) SF=OF and ZF=0
 JGE Jump if Greater or Eq (o1 >= o2) SF=OF
 JL Jump if Less (o1 < o2) SF <> OF
 JLE Jump if less or eq (o1 <= o2) ZF =1 or OF <> SF

There are other jumps for the NOT conditions; see the book if you would like to use
them.

Here are some examples of using various JUMPs:

Larger of two numbers in BX and AX gets copied into DX:

 mov dx, ax ; Assume AX is bigger
 cmp ax, bx ; Compare
 jae L1 ; Jump to L1 if AX >= BX
 mov dx, bx ; if it’s not copy BX to DX
L1: …

Smallest of three numbers stored in AL, BL, CL copied into “small”:

 mov small, AL ; Assume AL is smallest
 cmp small, BL
 jbe L1 ; Jump to L1 if AL < BL
 mov small, BL ; BL smaller, so move into small
L1: cmp small, CL ; Compare smallest so far with CL
 jbe L2
 mov small, cl ; CL smaller so move into small
L2: …

Repeatedly reading from the keyboard, remembering the minimum entered so far, until
the user types the sentinel value of “-9999”:

 mov edx, -65535 ; current minimum
L1: call readint
 call crlf
 cmp eax, -9999
 je ExitLoop
 cmp eax, edx
 jg L1
 mov edx, eax ; Set new min
 jmp L1
ExitLoop:
 mov eax, edx
 call Writeint

Here is a program that finds the MAX out of an array of values. It has a subtle bug. Can
you find it?

.data
array word 40, -10, 45, 910, 100, -45, 3
count word 7

.code
main proc
 movzx ecx, count ; Loop through all except first
 dec ecx
 mov dx, array ; current max = 40
 mov ebx, offset array
 add ebx, 2
L1: mov ax, [ebx]
 add ebx, 2
 cmp ax, dx
 jl L1 ; If AX < DX jump to L1 to compare next number
 mov dx, ax ; new max
 loop L1

 move ax, 0
 mov ax, dx
 call Writeint

 exit
main endp

Here is the relevant portion with the bug fixed:

L1: mov ax, [ebx]
 add ebx, 2
 cmp ax, dx
 jl SkipNewMax ; If AX < DX jump to LOOP to compare next number
 mov dx, ax ; new max
SkipNewMax:
 loop L1

We were skipping the LOOP instruction, so ECX wasn’t being decremented properly.

There are several other useful sample programs you should look at in the textbook!

High Level Logic Structures

It may be useful to point out how assembly instructions can be used as a template to
corresponding high- level logic structures. Here we will only look at the IF, Compound
IF, and WHILE loop.

IF Statement

The template for the if statement is:

 If (operand1 = operand2) then
 Statement;
 Statement;
 End if

Here is an assembly template that corresponds to the same thing:

 cmp operand1, operand2
 jne FalseBranch
 <statement>
 <statement>
FalseBranch:

Compound-IF Statement using OR

The compound OR statement template looks like:

 If (X > op1) or (X >= op2) or (X = op3) or (X< op4) then
 Statement;
 Statement;
 End if

Here is an assembly template for the same thing:

 cmp X, op1 ; If any condition true, jump to statements
 jg L1
 cmp al, op2
 jge L1
 cmp al, op3
 je L1
 cmp al, op4
 jl L1
 jmp L2
L1: <statement>
 <statement>
L2: … ; end if

Compound-IF using AND

The compound AND statement template looks like:

 If (X > op1) and (X>=op2) and (X=op3) and (X<op4) then
 Statement;
 Statement;
 End If

There are two approaches to the compound-AND. The first approach is to make a label
that we jump to for each AND statement:

 cmp x, op1
 jg L1
 jmp EndStatement
L1: cmp x, op2
 jge L2
 jmp EndStatement
L2: cmp x, op3
 je L3
 jmp EndStatement
L3: cmp x, op4
 jl L4
 jmp EndStatement
L4: <statement>
 <statement>
EndStatement:

A more compact approach is to reverse the conditions and jump to an exit label when any
condition is true. The condition X>op1 becomes NOT (X>op1) or (X<=op1).

 cmp x, op1
 jle L1
 cmp x, op2
 jl L1
 cmp x, op3
 jne L1
 cmp x, op4
 jge L1
 <statement>
 <statement>
L1: ; End If

While Structure

The WHILE structure tests a condition first before performing a block of statements. As
long as the while condition remains true, the statements are repeated. For example:

 While (op1 < op2)
 Statement;
 Statement;
 End While

To translate this into assembly we can reverse the condition and jump to the label
EndWhile when the condition becomes true:

WhileLabel:
 cmp op1, op2
 jge EndWhile ; Condition false, end loop!
 <statement>
 <statement>
 jmp Whilelabel
EndWhile:

These loops are enough to also construct repeat-while or for loops. As you may recall
from CS101 or CS201, we really only need one type of loop since all of these loops can
be converted into oen another.

