
William Stallings
Computer Organization
and Architecture

Chapter 11 – 11.3
CPU Structure
and Function

CPU Structure

zCPU must:
yFetch instructions
yInterpret instructions
yFetch data
yProcess data
yWrite data

Registers

zCPU must have some working space (temporary
storage)

zCalled registers
zNumber and function vary between processor

designs
zOne of the major design decisions
zTop level of memory hierarchy

User Visible Registers

zGeneral Purpose
zData
zAddress
zCondition Codes

General Purpose Registers (1)

zMay be true general purpose
zMay be restricted
zOrthogonal: If any general-purpose register can

contain the operand for any opcode
zMay be used for data or addressing
zData
yAccumulator

zAddressing
ySegment

General Purpose Registers (2)

zMake them general purpose
yIncrease flexibility and programmer options
yIncrease instruction size & complexity

zMake them specialized
ySmaller (faster) instructions
yLess flexibility

How Many GP Registers?

zBetween 8 - 32
zFewer = more memory references
zMore does not reduce memory references and

takes up processor real estate
zSee also RISC

How big?

zLarge enough to hold full address
zLarge enough to hold full word
zOften possible to combine two data registers
yC programming
ydouble int a;
ylong int a;

Condition Code Registers

zSets of individual bits
ye.g. result of last operation was zero

zCan be read (implicitly) by programs
ye.g. Jump if zero

zCan not (usually) be set by programs

Control & Status Registers

zProgram Counter
zInstruction Decoding Register
zMemory Address Register
zMemory Buffer Register

zQuick quiz: what do these all do?

Program Status Word (PSW)
zA set of bits
zIncludes Condition Codes
ySign of last result
yZero
yCarry
yEqual
yOverflow
yInterrupt enable/disable
ySupervisor

Supervisor Mode

zIntel ring zero
zKernel mode
zAllows privileged instructions to execute
zUsed by operating system
zNot available to user programs

Other Registers

zMay have registers pointing to:
yProcess control blocks (see O/S)
yInterrupt Vectors (see O/S)

zCPU design and operating system design are
closely linked, can tailor register organization to
the OS

zOften the first few hundred or thousand words
of memory allocated for control purposes

Example Register
Organizations

Example Microprocessors –
Register Organization MC68000

zMotorola MC68000
yNoted for being an orthogonal architecture
y8 32-bit general purpose data registers
y8 32-bit address registers

⌧Some used as stack pointers, OS

y32-bit program counter
y16-bit status register
yNice clean architecture, no messy segmentation

Example Microprocessors –
Register Organization 8086

zIntel 8086
yOther extreme from MC68000, lots of specific

registers
y16-bit flags, Instruction Pointer
yGeneral Registers, 16 bits

⌧AX – Accumulator, favored in calculations
⌧BX – Base, normally holds an address of a variable or func
⌧CX – Count, normally used for loops

⌧DX – Data, normally used for multiply/divide

Example Microprocessors –
Register Organization 8086

z Segment, 16 bits
ySS – Stack, base segment of stack in memory
yCS – Code, base location of code
yDS – Data, base location of variable data
yES – Extra, additional location for memory data

z Index, 16 bits
yBP – Base Pointer, offset from SS for locating subroutines
ySP – Stack Pointer, offset from SS for top of stack
ySI – Source Index, used for copying data/strings
yDI – Destination Index, used for copy data/strings

z Move to 32 bit registers in 80386 complicated things a
bit for backward compatiblity

Instruction Cycle - Indirect
Cycle

z Instruction Cycle
yIn the Fetch Portion, there are three ways to handle addressing

in the instruction
⌧Immediate Addressing – Operand is directly present in the

instruction, e.g. ADD 5 = “Add 5 to Acc”
⌧Direct Addressing – The operand contains an address with the

data, e.g. ADD 100h = “Add (Contents of Mem Location 100)”
• Downside: Need to fit entire address in the instruction, may limit

address space
⌧Indirect Addressing – The operand contains an address, and that

address contains the address of the data, e.g. Add (100h) = “The
data at memory location 100 is an address. Go to the address
stored there and get that data and add it to the Acc.”

• Downside: Requires more memory accesses
• Upside: Can store a full address at memory location 100
• Can also do Indirect Addressing with registers

yIndirect Addressing can be thought of as additional instruction
subcycle

Instruction Cycle with Indirect

Instruction Cycle State
Diagram

Data Flow (Instruction Fetch)

zDepends on CPU design
zIn general:

zFetch
yPC contains address of next instruction
yAddress moved to MAR
yAddress placed on address bus
yControl unit requests memory read
yResult placed on data bus, copied to MBR, then to IR
yMeanwhile PC incremented by 1

Data Flow (Data Fetch)

z IR is examined
z If instruction uses immediate addressing

y Rightmost N bits of MBR available for processing
z If instruction uses direct addressing

y Send rightmost N bits of MBR to MAR
y Control unit requests memory read
y Result (operand at that address) moved to MBR

z If instruction calls for indirect addressing, indirect cycle is performed
y Right most N bits of MBR transferred to MAR
y Control unit requests memory read
y Result (address of operand) moved to MBR
yMBR moved to MAR
y Control unit requests memory read
y Result (operand at the address) moved to MBR

Data Flow (Fetch Diagram)

Data Flow (Indirect Diagram)

Data Flow (Execute)

zMay take many forms
zDepends on instruction being executed
zMay include
yMemory read/write
yInput/Output
yRegister transfers
yALU operations

Data Flow (Interrupt)

z Simple
z Predictable
z Repeat the following for all registers that need saving

yContents of register copied to MBR
ySpecial memory location (e.g. stack pointer) loaded to MAR
yMBR written to memory
yIncrement stack pointer

z PC loaded with address of interrupt handling routine
z Next instruction (first of interrupt handler) can be

fetched

Data Flow (Interrupt Diagram)

