William Stallings
Computer Organization
and Architecture

Chapter 11 - 11.3
CPU Structure
and Function

CPU Structure

36 CPU must:
[AlFetch instructions
Interpret instructions
[AlFetch data
[AlProcess data
[AlWrite data

Registers

8 CPU must have some working space (temporary
storage)

F6 Called registers

FNumber and function vary between processor
designs

8 0ne of the major design decisions
8 Top level of memory hierarchy

User Visible Registers

38 General Purpose
6 Data

FAddress

#6 Condition Codes

General Purpose Registers (1)

¥ May be true general purpose
FMay be restricted

8 Orthogonal: If any general-purpose register can
contain the operand for any opcode

¥ May be used for data or addressing

¥ Data
B®Accumulator

8 Addressing
[AlSegment

General Purpose Registers (2)

36 Make them general purpose
[AlIncrease flexibility and programmer options
[AlIncrease instruction size & complexity
36 Make them specialized
[AlSmaller (faster) instructions
[AlLess flexibility

How Many GP Registers?

8 Between 8 - 32
e Fewer = more memory references

¥ More does not reduce memory references and
takes up processor real estate

3 See also RISC

How big?

FeLarge enough to hold full address

F8Large enough to hold full word

38 Often possible to combine two data registers
[AIC programming
[~ldouble int a;
[Aallong int a;

Condition Code Registers

#6 Sets of individual bits
[ale.g. result of last operation was zero

8 Can be read (implicitly) by programs
[Ale.g. Jump if zero

8 Can not (usually) be set by programs

Control & Status Registers

#Program Counter

3¢ Instruction Decoding Register
FMemory Address Register

¥ Memory Buffer Register

#8Quick quiz: what do these all do?

Program Status Word (PSW)

3B A set of bits

Includes Condition Codes
[AISign of last result
[AlZero
[~ICarry
[~lEqual
[~lOverflow
[AlInterrupt enable/disable
[AlSupervisor

Supervisor Mode

38 Intel ring zero

FKernel mode

38 Allows privileged instructions to execute
8 Used by operating system

FNot available to user programs

Other Registers

FMay have registers pointing to:
[AlProcess control blocks (see O/S)
[AlInterrupt Vectors (see 0O/S)

FCPU design and operating system design are
closely linked, can tailor register organization to
the OS

#6 Often the first few hundred or thousand words
of memory allocated for control purposes

Example Register
Organizations

Data Registers General Registers General Registers

DO AX [Accumulator EAX AX

D1 BX Base EBX BX

D2 CX Count ECX CX

D3 DX Data EDX DX

D4

D5 Pointer & Index ESP SP

D6 SP [Stack Pointer] EBP BP

D7 BP |Base Pointer ESI S
51 [Source Index EDI DI

Address Registers D1 | Dest Index

Al Program Status

Al Segment [FLAGS Register |

A2 CS [Code | Instruction Pointer |

A3 DS Data

A4 88 Stack

AS ES Extra () 80386 - Pentium 11

Ab

AT Program Status

AT

Program Status
Program Counter | (b) 8086
Status Register

(a) MC68000

Example Microprocessors -
Register Organization MC68000

3 Motorola MC68000

[~INoted for being an orthogonal architecture
[~18 32-bit general purpose data registers

[~18 32-bit address registers
XISome used as stack pointers, OS

[A132-bit program counter
[~116-bit status register
[~INice clean architecture, no messy segmentation

Example Microprocessors -
Register Organization 8086

38 Intel 8086
[2l0ther extreme from MC68000, lots of specific
registers
[2116-bit flags, Instruction Pointer
[AlGeneral Registers, 16 bits
XIAX — Accumulator, favored in calculations
XIBX — Base, normally holds an address of a variable or func
XICX — Count, normally used for loops
XIDX — Data, normally used for multiply/divide

Example Microprocessors -
Register Organization 8086

¢ Segment, 16 bits
(1SS — Stack, base segment of stack in memory
[AICS - Code, base location of code
[AIDS - Data, base location of variable data
[BIES - Extra, additional location for memory data
Index, 16 bits
[®IBP — Base Pointer, offset from SS for locating subroutines
[&ISP — Stack Pointer, offset from SS for top of stack
&SI — Source Index, used for copying data/strings
[AIDI — Destination Index, used for copy data/strings

#6 Move to 32 bit registers in 80386 complicated things a
bit for backward compatiblity

Instruction Cycle - Indirect
Cycle

Instruction Cycle

In the Fetch Portion, there are three ways to handle addressing
in the instruction
XlImmediate Addressing — Operand is directly present in the
instruction, e.g. ADD 5 = “Add 5 to Acc”
XIDirect Addressing — The operand contains an address with the
data, e.g. ADD 100h = “Add (Contents of Mem Location 100)”
» Downside: Need to fit entire address in the instruction, may limit
address space
XlIndirect Addressing — The operand contains an address, and that
address contains the address of the data, e.g. Add (100h) = “The
data at memory location 100 is an address. Go to the address
stored there and get that data and add it to the Acc.”
« Downside: Requires more memory accesses
* Upside: Can store a full address at memory location 100
* Can also do Indirect Addressing with registers
Indirect Addressing can be thought of as additional instruction
subcycle

Instruction Cycle with Indirect

Indirect

Interrupt

Instruction Cycle State
Diagram

Indirection

Indirection

Operand

Instructio
operation
decoding

Data
Operation

calculatior

Return for string interrupy
of vector data

Instruction complete,
{eteth next instruction

Data Flow (Instruction Fetch)

F6Depends on CPU design
38 In general:

FFetch
[AIPC contains address of next instruction
[&lAddress moved to MAR
[~lAddress placed on address bus
[alControl unit requests memory read
[~lResult placed on data bus, copied to MBR, then to IR
[2IMeanwhile PC incremented by 1

Data Flow (Data Fetch)

¥ IR is examined
3 If instruction uses immediate addressing
Rightmost N bits of MBR available for processing
If instruction uses direct addressing
Send rightmost N bits of MBR to MAR
Control unit requests memory read
Result (operand at that address) moved to MBR
If instruction calls for indirect addressing, indirect cycle is performed
Right most N bits of MBR transferred to MAR
Control unit requests memory read
Result (address of operand) moved to MBR
MBR moved to MAR
Control unit requests memory read
Result (operand at the address) moved to MBR

Data Flow (Fetch Diagram)

CPU
PC > MAR > :>
<: ——1Memory
T >
“ontro
Unit :>

IR [K—|MBR

Address Data Control

Bus Bus Bus
MBR = Memory buffer register
MAR = Memory address register
IR = Instruction register
PC = Program counter

Data Flow (Indirect Diagram)

CPU

——— > MAR >

v

Control
Unit

— = Memory
—>

MBR [

Address Data Control
Bus Bus Bus

Data Flow (Execute)

FMay take many forms

36 Depends on instruction being executed
FMay include

[AIMemory read/write

[AlInput/Output

[~lRegister transfers

[AIALU operations

Data Flow (Interrupt)

3 Simple
Predictable

38 Repeat the following for all registers that need saving
&l Contents of register copied to MBR

&l Special memory location (e.g. stack pointer) loaded to MAR
MBR written to memory

Increment stack pointer
PC loaded with address of interrupt handling routine

Next instruction (first of interrupt handler) can be
fetched

Data Flow (Interrupt Diagram)

CPU

PC

MAR

i

L Control

Unit

Memory

VYV

[—

MBR

=

Address Data Control
Bus Bus Bus

