William Stallings
Computer Organization
and Architecture

Chapter 3
Instruction Cycle Review
System Buses

Simple Bus Architecture

* A simplified motherboard of a personal computer (top view):

- Plug-in card
1/O bus connector
HITThRY Integrated Circuits
- / \\

oy 7
nees

{% |2

Connectors for plug-in cards

Motherboard

Board traces

|~ (wires)




Architecture Review - Program
Concept

6 Hardwired systems are inflexible
[alLots of work to re-wire, or re-toggle

¥ General purpose hardware can do different
tasks, given correct control signals

#6 Instead of re-wiring, supply a new set of control
signals

Instruction

Instruction Codes — Interpreter

What is a program?

¢ Software
[&JA sequence of steps

[alFor each step, an arithmetic or logical operation is
done

[alFor each operation, a different set of control signals
is needed — i.e. an instruction




Function of Control Unit

F For each operation a unique code is provided
Ae.g. ADD, MOVE

# A hardware segment accepts the code and
issues the control signals

¥ We have a computer!

Components

#6 Central Processing Unit
[&IControl Unit
[&lArithmetic and Logic Unit
#6 Data and instructions need to get into the CPU
and results out
Input/Output
#6 Temporary storage of code and results is
needed
[&aIMain memory




Computer Components:

Top Level View

CPU Memory
| PC | | MAR ‘ [nsln.qu:un
Instruction
Instruction

[ IR | [MBR ]

Data

o

Data

1/0 Module

PC

MAR
MBR
/O AR
/O BR =

Bulffers

Program counter
Instruction register
Memory address register
Memory bufler register
1/0 address register

1/0 buffer register

Simplified Instruction Cycle

# Two steps:
IFetch
[~IExecute

Fetch Cycle Execute Cycle

Feteh Next
Instruction

START 2

Execute
Instruction




Fetch Cycle

¢ Program Counter (PC) holds address of next
instruction to fetch

F Processor fetches instruction from memory
location pointed to by PC

3 Increment PC
[AlUnless told otherwise
#8 Instruction loaded into Instruction Register (IR)

#8 Processor interprets instruction and performs
required actions

Execute Cycle

¥ Processor-memory

[©ldata transfer between CPU and main memory
F Processor 1/0

[#lData transfer between CPU and 1/0 module
#6 Data processing

[&AlSome arithmetic or logical operation on data
#6 Control

[AlAlteration of sequence of operations

[Ale.g. jump
#6 Combination of above




Hypothetical Machine

# Instruction Format - Address range?
Opcode | Address

0 34 15

¥ Integer Format - Data range?

‘S‘ Magnitude
0o 1

¥ Registers

[AIPC = Program Counter, IR = Instruction Register, AC =
Accumulator

#6 Partial List of Opcodes
[A10001 = Load AC from Memory
[A10010 = Store AC to Memory
[Al10101 = Add to AC from Memory

Example of Program Execution

Memory CPU Registers Memory CPU Registers
00[T 9 4 0 [Fo0]PC |30 940 30 0] PC
0159 4] L JAC| 3015 0 41 000 3|AC
0220 41 10 20|IR[302[Z 041 104 0]IR
thr 940 - ;

941[0 00 2 941
Step 1 Step 2

Memory CPU Registers Memory CPLU Registers
00T 0 40 S0 1)Pc |30 e 40 30 1] PC
N[5 9 4 1 [00 0 3]AC]301[5 8 41 000 S]AC
30229 41 1»594-||I|c nfze 41 gio4 ﬂe
940[0 T 0 3] sl 03 *ig2=5
941[0 00 2 941
Step 3 Step 4

Memory CPU Registers Memory CPU Registers
30010 4 0 30 2)pc |30 9 40 30 2| PC
0159 4] 0 0 0 5]ac] 3|5 e 41 000 S]AC
302[29 4 1T—w2 0 4 T)IR|302[2 9 41 20 4 1]IR

940[T 0 0 3] 9400 0 0 3
041 [0 002 041

Step 5 Step 6




Modifications to Instruction
Cycle

¥ Simple Example
Al Always added one to PC
[AlEntire operand fetched with instruction

¥ More complex examples
[AIMight need more complex instruction address calculation
[XIConsider a 64 bit processor, variable length instructions
Instruction set design might require repeat trip to memory to
fetch operand
XlIn particular, if memory address range exceeds word size
[AlOperand store might require many trips to memory
[XIVector calculation

Instruction Cycle -
State Diagram

Operand

Instructin
operation
decoding

Data
Operation

Instruction complete,
feeth next instruction

Retrn for string
or vector data

Start Here




Introduction to Interrupts

¥ We will have more to say about interrupts later!

3 Interrupts are a mechanism by which other modules (e.g.
I/0) may interrupt normal sequence of processing

3 Four general classes of interrupts
[AProgram - e.g. overflow, division by zero
A Timer
XIGenerated by internal processor timer
XlUsed in pre-emptive multi-tasking
[Al1/0 - from 1/0 controller
[AlHardware failure
[Xle.g. memory parity error
3 Particularly useful when one module is much slower than
another, e.g. disk access (milliseconds) vs. CPU
(microseconds or faster)

Interrupt Examples

User 110 User 110 User 140
Program Program Program Program Program Program
—_T 1 I —_T 1 [ —_ 0 1 FRNL |
| e | LR | AT
@ L @ @ RO @ | ! A0 @
| h [ 1 ST
e N TV [ B -*"xx" 10 1, N fL” 10
1 i - - ' i - - ' i
WRITI : ,:'l : I( omimand WRITE r’ T Command WRITE r”_ ,.'l ;, Command
— I S 1 — L — |
| (R I 3 1 L | i J,"
I [ I 1 i
[ ! Jr‘\‘ ! 1 ! Irlr : ,J ,’l
1 ! s END | ! | for
s ’ ! &) |ord
@ | i N, }*'lr{ i
] -
|1 )-“ ! r\,r\ s Interrupt : ‘,."’ J"’ Interrupt
[ @ Pep w0 ™~ Handier Vif Handler
1 I 1 1 i Lo
L i L i Ay
WRITE WRITE PR & WRITE S : | &
— | PN T S
| v END Pt END
! v Pop
: 7 : )f’ !!
- /
@ : S | & 1 }r_f
14
l ® |
14
I
WRITE WRITE WRITE

(o) No interrupis (b Interrupts; short TO wait () Interrupts: long 1A wait




Interrupt Cycle

36 Added to instruction cycle
3 Processor checks for interrupt
(A Indicated by an interrupt signal
3 If no interrupt, fetch next instruction
3 If interrupt pending:
[AlSuspend execution of current program
[AlSave context (what does this mean?)
[AlSet PC to start address of interrupt handler routine

[AlProcess interrupt
[AlRestore context and continue interrupted program

Instruction Cycle (with
Interrupts) - State Diagram

Operand
store

Operand
address
calculatio

Instructio
operation
decoding

Operand

e Data
AL Operation
caleulation, L

Return for string interrupt,
or vector data

calculatior

Instruction complete,
{eteth next instruction




Multiple Interrupts

#6 Disable interrupts — Sequential Processing

[AlProcessor will ignore further interrupts whilst
processing one interrupt

Interrupts remain pending and are checked after first
interrupt has been processed

lInterrupts handled in sequence as they occur

¥ Define priorities — Nested Processing
[&lLow priority interrupts can be interrupted by higher
priority interrupts
[AlWhen higher priority interrupt has been processed,
processor returns to previous interrupt

Multiple Interrupts - Sequential

Interrupt
User Program Handler X

-
-
L~ |

- e Interrupt
T T Handler Y

- =
- — .

o
-
~

|

|

|

|

|

= |
|

|

|

~

Disabled Interrupts — Nice and Simple




Multiple Interrupts - Nested

Interrupt
User Program Handler X
= | |
= | L~ |
= - I
= | e I
= . I
= | - H'M__
= | - |t.\ ~{.
= ¢ [N ."\._‘
= i'———-.__‘__‘__‘__‘__‘___J i \"\.\_
E i . . Interrupt
= \. - 7
= : o ~~ _Handler ¥
= | . ~
= ! e 1
= | “ |
= ! . |
= : S :
= | -\\ |
= . |
= | By
= + |
= o

How to handle state with an arbitrary number of interrupts?

Sample Time Sequence of
Multiple Interrupts

Priority 2 Priority 5 Priority 4
User Program Printer ISR Comm ISR Disk ISR
=0 t=15
t=10
TZS
t=25
'\ -
t=40 t=35

Disk can’t interrupt higher priority Comm
Note: Often low numbers are higher priority

11



Connecting

F All the units must be connected
¥ Different type of connection for different type of
unit
AIMemory
AlInput/Output
BICPU

Memory Connection

¥ Memory typically consists of N words of equal length
addressed from 0 to N-1
¥ Receives and sends data
(Al To Processor
(Al To 1/0 Device
¥ Receives addresses (of locations)
¥ Receives control signals
[AIRead
AWrite
&I Timing

12



Input/Output Connection(1)

¥ Functionally, similar to memory from internal viewpoint
¥ Instead of N words as in memory, we have M ports
3 Output

[AIReceive data from computer
[AlSend data to peripheral

F Input
[AlReceive data from peripheral
[AlSend data to computer

Input/Output Connection(2)

#8 Receive control signals from computer

#6 Send control signals to peripherals
[&le.g. spin disk

#6 Receive addresses from computer
[&le.g. port number to identify peripheral

#6 Send interrupt signals (control)

13



CPU Connection

¥ Sends control signals to other units
8 Reads instruction and data

¢ Writes out data (after processing)
#6 Receives (& acts on) interrupts

Buses

# There are a number of possible interconnection

systems. The most common structure is the
bus

#6 Single and multiple BUS structures are most
common

Fe.g. Control/Address/Data bus (PC)
Fe.g. Unibus (DEC-PDP) — replaced the Omnibus

14



What is a Bus?

¥ A communication pathway connecting two or more
devices
36 Usually broadcast
[AlEveryone listens, must share the medium
[AlMaster — can read/write exclusively, only one master
[ASlave — everyone else. Can monitor data but not produce
36 Often grouped
[AA number of channels in one bus
[Ale.g. 32 bit data bus is 32 separate single bit channels
# Power lines may not be shown

# Three major buses: data, address, control

Bus Interconnection Scheme

.

CPU Memory [| *++| Memory /0 e /0

Control Lines

L1 ] 17 L1 1 III|

Address Lines

I 1 [T I 1 I|

Data Lines




Data Bus

38 Carries data
[®rIRemember that there is no difference between
“data” and “instruction” at this level
FWidth is a key determinant of performance
[AI8, 16, 32, 64 bit
[&AlWhat if the data bus is 8 bits wide but instructions
are 16 bits long?
[&alWhat if the data bus is 64 bits wide but instructions
are 16 bits long?

Address bus

3 Identify the source or destination of data
In general, the address specifies a specific memory address or a
specific 1/0 port
¥ e.g. CPU needs to read an instruction (data) from a
given location in memory

# Bus width determines maximum memory capacity of
system
218086 has 20 bit address bus but 16 bit word size for 64k directly
addressable address space
[&lBut it could address up to 1MB using a segmented memory
model
XIRAM: 0 — BFFFF, ROM: C0000 - FFFFF

XIDOS only allowed first 640K to be used, remaining memory for
BIOS, hardware controllers. Needed High-Memory Manager to
“break the 640K barrier”

16



Control Bus

# Control and timing information
[AlDetermines what modules can use the data and address lines
If a module wants to send data, it must (1) obtain permission to
use the bus, and (2) transfer data — which might be a request
for another module to send data
3 Typical control lines
AIMemory read
Memory write
[A1/0 read
1/0 write
Interrupt request
Interrupt ACK
[A1Bus Request
[AIBus Grant
[AIClock signals

Big and Yellow?

¥ What do buses look like?
[~IParallel lines on circuit boards
AIRibbon cables

[AlStrip connectors on mother boards
Xle.g. PCI

[~lSets of wires
# Limited by physical proximity — time delays, fan
out, attenuation are all factors for long buses




Single Bus Problems

38 Lots of devices on one bus leads to:

Propagation delays
XILong data paths mean that co-ordination of bus use can adversely affect
performance — bus skew, data arrives at slightly different times

X1If aggregate data transfer approaches bus capacity. Could increase bus
width, but expensive

Device speed
[XIBus can't transmit data faster than the slowest device

XISlowest device may determine bus speed!
* Consider a high-speed network module and a slow serial port on the same
bus; must run at slow serial port speed so it can process data directed for it

[AlPower problems
¥ Most systems use multiple buses to overcome these
problems

Traditional (ISA)
(with cache)

Processor Local Bus Cache
Buffers data
Laocal 10 transfers
Main controller between
Memory system’
I expansion bus

l System Bus | F

Modem

Metwaork Enpmu ion
SOSI bus interface

Serial

I Expansion Bus

This approach breaks down as 1/0 devices need higher performance

18



High Performance Bus -
Mezzanine Architecture

Addresses higher speed 1/0 devices by moving up in the hierarchy

Main
Memory

System Bus |

| LAN |

| Viden

| SCsI | | Pl.“)—‘ll |[irnp|1i|.'

| High-Speed Bus

FAX Expansion | Serial |

bus interface

Expansion Bus

3200 MB/sec 3200 MB/sec
400-MHz 512KB-2MB 400-MHz 512KB-2MB
Core Cache Core Cache
B a se d B00 MB/sac
100-MH.
B u S Ar System Ezus I I
-
AGP Intel 440GX 100 MHz 2GB
AGP 2X
- 2 AGPset -
c h I te ct u re Graphics 533 MBJsec (Host Bridge) 800 MBlsec 1SIJSRI:HM1
133 MBsec | | 33-MHz PCI Bus
I I USB #2, "
_ IDE Bus #2
e s usse Pt (e
« Bridging with | |
dual Pentium Il o, Camarat| | mouse co-ROM
Xeon proces- 21z
sors on Slot 2. a||* _I” = =ses ]
(Source: http:// =
. Hard Hard I I 16.7 MB/sec I I
www.intel.com.) Disk Diske
E‘l';ﬂa":; Keyboard Audio

19



Direct Memory Access

DMA Transfer from Disk to Memory
Bypasses the CPU

CPU Memory Disk
Y Yy :
1 | | 1
1 ! | 1
! & | Without DMA! With DMA !
1 | e —————— T T
b e e e e | Bus

DMA Flowchart for a Disk Transfer
— Enter

CPU sets up disk for
DMA transfer

LT
..

L
..
.

DMA device begins
transfer independent of
CPU

L,
/" DMA device
»*  interrupts CPU
CPU executes e when finished
another process

20



Bus Types

36 Dedicated
[AlSeparate data & address lines

#6 Multiplexed
[AIShared lines
[RlConsider shared address, data lines

XINeed separate Address valid or Data valid control line
XITime division multiplexing in this case

[rJAdvantage - fewer lines
[#IDisadvantages

XIMore complex control
XlUltimate performance

Bus Arbitration

# More than one module may want to control the

bus

[&le.g. 1/0 module may need to send data to memory

and to the CPU

#6 But only one module may control bus at one
time
[AlArbitration decides who gets to use the bus

[AlArbitration must be fast or 1/0 devices might lose
data

3 Arbitration may be centralized or distributed




Centralized Arbitration

¥ Single hardware device is responsible for
allocating bus access
[2IBus Controller
[&lArbiter

¥ May be part of CPU or separate

Distributed Arbitration

36 No single arbiter
# Each module may claim the bus

38 Proper control logic on all modules so they behave to
share the bus

38 Purpose of both distributed and centralized is to
designate the master

¥ The recipient of a data transfer is the slave

# Many types of arbitration algorithms: round-robin,
priority, etc.

22



Bus Arbitration

Bus request

—

(a) | Arbiter | Bus grant

Wl Wl W i
S Ry S

* (a)Simple
centralized bus 0 ' 2 e | om
arbitration; (b)
centralized " Bus request level 0
arbitration with ) | Arbiter : Bus request level &
priority levels; (c) ] lﬂl —
decentralized bus  Bus grant lev;el n; \_/IJ \\__/J' UF q
arbitration. Bus grant level £ 0 | 2| o
(Adapted from
[Tanenbaum: Bus request
1999]). Busy
© +5V.
. . Bus gm{t U U * I_ _l
Daisy Chaining ; | 5 i
of devices

What if a device breaks? Devices to left higher priority

Bus Arbitration
Implementations - Centralized

3 Centralized
If a device wants the bus, assert bus request
[Al Arbiter decides whether or not to send bus grant
[AIBus grant travels through daisy-chain of devices

[AlIf device wants the bus, it uses it and does not propagate bus
grant down the line. Otherwise it propagates the bus grant.

[AElectrically close devices to arbiter get first priority
¥ Centralized with Multiple Priority Levels

[&lCan add multiple priority levels, grants, for more flexible
system. Arbiter can issue bus grant on only highest priority line

23



Bus Arbitration Implementation
- Decentralized

¥ Decentralized
[alIf don’t want the bus, propagate bus grant down the
line
[&ITo acquire bus, see if bus is idle and bus grant is on

X1If bus grant is off, may not become master, propagate
negative bus grant

X1If bus grant is on, propagate negative bus grant
[2IWhen dust settles, only one device has bus grant
[2lAsserts busy on and begins transfer
[alLeftmost device that wants the bus gets it

Timing

36 Co-ordination of events on bus

#6 Synchronous
[&lEvents determined by clock signals
[~lControl Bus includes clock line
[~lA single 1-0 is a bus cycle
[~lAll devices can read clock line
[AlUsually sync on leading edge
[AlUsually a single cycle for an event

24



100 MHz Bus Clock

I 010 1 0 1 0
Crystal «— Logical 1 (+5V)
Oscillator M| | «— Logical 0 (0V)
10 ns

100 million cycles per second
1 cyclein (1/100,000,000) seconds = 0.0000001s = 10 ns

In reality, the clock is a bit more sawtoothed

/N N\

Synchronous Timing Diagram
Read Operation Timing

Clock

Indicates read/address lines valid, noticed by memory
Start

Indicates we want to read, not write
Read
Address Address from memory we want
Lines

delay

Data Data from memory
Lines
Acknowledge Indicates data lines valid

25



Synchronous - Disadvantages

3 Although synchronous clocks are simple, there
are some disadvantages
[~lEverything done in multiples of clock, so something
finishing in 3.1 cycles takes 4 cycles
[&alWith a mixture of fast and slow devices, we have to
wait for the slowest device

[XIFaster devices can't run at their capacity, all devices are tied
to a fixed clock rate

XIConsider memory device speed faster than 10ns, no
speedup increase for 100Mhz clock

#8 One solution: Use asynchronous bus

Asynchronous Bus

¥ No clock

3 Occurrence of one event on the bus follows and
depends on a previous event

# Requires tracking of state, hard to debug, but
potential for higher performance

# Also used with networking
[&lIProblem with “drift” and loss of synchronization
[&alSome use self-clocking codes, e.g. Ethernet

26



Asynchronous Timing Diagram

MSYN

Asserted once read/address lines stabilize

Master synC

S5YN

Deasserted when finished reading
1

Slave = memory, ACK’s master sync
~ pty, Master reads the data from the data bus

Slave sync

Read

Address
Lines

™

Daia
Lines

Slave places requested data on bus

27



