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Memory and Caching

Chapter 6

Chapter 6 Objectives

• Master the concepts of hierarchical memory 
organization.

• Understand how each level of memory contributes 
to system performance, and how the performance 
is measured.

• Master the concepts behind cache memory
– Skipping virtual memory, memory segmentation, paging 

and address translation.  Cover in OS class.
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The Memory Hierarchy

• This storage organization can be thought of as a pyramid:

Hierarchy List

• Registers
• L1 Cache
• L2 Cache
• Main memory
• Disk cache
• Disk
• Optical
• Tape

• As one goes down 
the hierarchy
– Decreasing cost per 

bit
– Increasing capacity
– Increasing access time
– Decreasing frequency 

of access of the 
memory by the 
processor – locality of 
reference
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Locality of Reference

• Temporal Locality
– Programs tend to reference the same memory locations at a 

future point in time
– Due to loops and iteration, programs spending a lot of time 

in one section of code
• Spatial Locality

– Programs tend to reference memory locations that are near 
other recently-referenced memory locations

– Due to the way contiguous memory is referenced, e.g. an 
array or the instructions that make up a program

– Sequential Locality
• Instructions tend to be accessed sequentially

• Locality of reference does not always hold, but it 
usually holds

Semiconductor Memory

• RAM – Random Access Memory
– Misnamed as all semiconductor memory is 

random access
– Read/Write
– Volatile
– Temporary storage
– Two main types: Static or Dynamic
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Dynamic RAM
• Bits stored as charge in semiconductor 

capacitors
• Charges leak
• Need refreshing even when powered
• Simpler construction
• Smaller per bit
• Less expensive
• Need refresh circuits (every few milliseconds)
• Slower
• Main memory

Static RAM

• Bits stored as on/off switches via flip-flops
• No charges to leak
• No refreshing needed when powered
• More complex construction
• Larger per bit
• More expensive
• Does not need refresh circuits
• Faster
• Cache
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So you want fast?

• It is possible to build a computer which 
uses only static RAM (the memory used to 
build a cache)

• This would be very fast
• This would need no cache

– How can you cache cache?
• This would cost a very large amount

Read Only Memory (ROM)

• Permanent storage
• Microprogramming 
• Library subroutines
• Systems programs (BIOS)
• Function tables
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Types of ROM
• Written during manufacture

– Very expensive for small runs
• Programmable (once)

– PROM
– Needs special equipment to program

• Read “mostly”
– Erasable Programmable (EPROM)

• Erased by UV

– Electrically Erasable (EEPROM)
• Takes much longer to write than read

– Flash memory
• Erase whole memory electrically

Cache
• Small amount of fast memory
• Sits between normal main memory and CPU
• May be located on CPU chip or module

– An entire blocks of data is copied from memory to the cache 
because the principle of locality tells us that once a byte is 
accessed, it is likely that a nearby data element will be 
needed soon.
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Cache operation - overview

• CPU requests contents of memory location
• Check cache for this data
• If present, get from cache (fast)
• If not present, read required block from main 

memory to cache
• Then deliver from cache to CPU
• Cache includes tags to identify which block of 

main memory is in each cache slot

Cache Definitions
• This leads us to some definitions.

– A hit is when data is found at a given memory level.
– A miss is when it is not found.
– The hit rate is the percentage of time data is found at 

a given memory level.
– The miss rate is the percentage of time it is not. 
– Miss rate = 1 - hit rate.
– The hit time is the time required to access data at a 

given memory level.
– The miss penalty is the time required to process a 

miss, including the time that it takes to replace a block 
of memory plus the time it takes to deliver the data to 
the processor.
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Cache Example
• Consider a Level 1 cache capable of holding 

1000 words with a 0.1 µs access time.  Level 2 
is memory with a 1 µs access time.  

• If 95% of memory access is in the cache:
– T=(0.95)*(0.1 µs) + (0.05)*(0.1+1 µs) = 0.15 µs

• If 5% of memory access is in the cache:
– T=(0.05)*(0.1 µs) + (0.95)*(0.1+1 µs) = 1.05 µs

• Want as many cache hits as possible!

0% 100%

0.1 µs

1.1 µs

Block 0
Block 1
…

Block (2n/K)-1

Cache Design
• If memory contains 2n addressable words

– Memory can be broken up into blocks with K words per block.  
Number of blocks = 2n / K 

– Cache consists of C lines or slots, each consisting of K words
– C << M
– How to map blocks of memory to lines in the cache?

Memory

Cache Line 0
Line 1
…

Line C-1
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Cache Design

• Size
• Mapping Function
• Replacement Algorithm
• Write Policy
• Block Size
• Number of Caches

Size does matter

• Cost
– More cache is expensive

• Speed
– More cache is faster
– Up to a point - diminishing returns as cache 

increases in size
• Also can take longer to search the more cache 

there is
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Mapping Function
• Suppose we have the following configuration

– Word size of 1 byte
– Cache of 16 bytes
– Cache line / Block size is 2 bytes

• i.e. cache is 16/2 = 8 (23) lines of 2 bytes per line
• Will need 8 addresses for a block in the cache

– Main memory of 64 bytes
• 6 bit address needed to reference 64 bytes
• (26= 64)
• 64 bytes / 2 bytes-per-block  ! 32 Memory Blocks

– Somehow we have to map the 32 memory blocks to 
the 8 lines in the cache.  Multiple memory blocks will 
have to map to the same line in the cache!

Mapping Function – 64K Cache 
Example

• Suppose we have the following configuration
– Word size of 1 byte
– Cache of 64 KByte
– Cache line / Block size is 4 bytes

• i.e. cache is 64 Kb / 4 bytes = 16,384 (214) lines of 4 bytes
– Main memory of 16MBytes

• 24 bit address 
• (224=16M)
• 16Mb / 4bytes-per-block  ! 4 Meg of Memory Blocks

– Somehow we have to map the 4 Meg of blocks in 
memory onto the 16K of lines in the cache.  Multiple 
memory blocks will have to map to the same line in 
the cache!
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Direct Mapping
• Simplest mapping technique - each block of 

main memory maps to only one cache line
– i.e. if a block is in cache, it must be in one specific 

place
• Formula to map a memory block to a cache line:

– i = j mod c
• i=Cache Line Number
• j=Main Memory Block Number
• c=Number of Lines in Cache

– i.e. we divide the memory block by the number of 
cache lines and the remainder is the cache line 
address

Direct Mapping with C=4
• Shrinking our example to a cache line size of 4 

slots (each slot/line/block still contains 4 words):
– Cache Line Memory Block Held

• 0 0, 4, 8, …
• 1 1, 5, 9, …
• 2 2, 6, 10, …
• 3 3, 7, 11, …

– In general:
• 0 0, C, 2C, 3C, …
• 1 1, C+1, 2C+1, 3C+1, …
• 2 2, C+2, 2C+2, 3C+2, …
• 3 3, C+3, 2C+3, 3C+3, …
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Direct Mapping with C=4

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Main
MemorySlot 0

Slot 1

Slot 2

Slot 3

Cache Memory

Each slot contains K words
Tag: Identifies which memory block is in the slot
Valid: Set after block copied from memory to 
indicate the cache line has valid data 

Valid   Dirty    Tag

Direct Mapping Address Structure
• There is an easy way to compute 

i = j mod c 
based upon the bits in the address we are trying to access

• Address is in three parts
– Least Significant w bits identify unique word within a cache line

• w must be enough bits to address a specific word in a cache line; e.g. if 4 
words per cache line, then we need 2 bits for w

– Next Significant s bits specify which line this address maps into
• s must be enough bits to address a specific line in the cache; e.g. if 16 

cache lines, then we need 4 bits for s
– Remaining t bits used as a tag to identify the memory block

Tag  t Line or Slot  s Word  w

2 4 2

8 bit address
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Direct Mapping Address 64K Cache Example

Tag  t Line or Slot  s Word  w

8 14 2

• Given a 24 bit address (to access 16Mb)
• 2 bit word identifier (4 byte block)
• Need 14 bits to address the cache slot/line
• Leaves 8 bits left for tag (=22-14)

• No two blocks in the same line have the same Tag field
• Check contents of cache by finding line and checking Tag
• Also need a Valid bit and a Dirty bit

– Valid – Indicates if the slot holds a block belonging to the program being 
executed

– Dirty – Indicates if a block has been modified while in the cache.  Will 
need to be written back to memory before slot is reused for another block

V  D
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cache only memory address

Direct Mapping Example, 64K 
Cache

Main MemoryCache Memory
Addr Tag        W0  W1  W2  W3

0
1
2
3
4
5
..
..

214-1

Addr (hex)        Data

000000                 F1
000001 F2
000002                 F3
000003                 F4
000004                 AB
…
1B0004                11
1B0005                12
1B0006                13
1B0007                14

00          F1    F2   F3    F4

1B0007 = 0001 1011 0000 0000 0000 0111
Word = 11, Line = 0000 0000 0000 01, Tag= 0001 1011

1B          11   12    13    14 Line 0

Line 1

Line 1
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Cache Example

• The website for the textbook includes a 
link to CAMERA, a cache simulator

• Example for direct-mapped cache

Direct Mapping pros & cons

• Simple
• Inexpensive
• Fixed location for given block

– If a program accesses 2 blocks that map to 
the same line repeatedly, cache misses are 
very high – condition called thrashing
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Fully Associative Mapping
• A fully associative mapping scheme can overcome the 

problems of the direct mapping scheme 
– A main memory block can load into any line of cache
– Memory address is interpreted as tag and word
– Tag uniquely identifies block of memory
– Every line’s tag is examined for a match
– Also need a Dirty and Valid bit 

• But Cache searching gets expensive!
– Ideally need circuitry that can simultaneously examine all tags 

for a match
– Lots of circuitry needed, high cost

• Need replacement policies now that anything can get 
thrown out of the cache (will look at this shortly)

Associative Mapping Example

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Main
MemorySlot 0

Slot 1

Slot 2

Slot 3

Cache Memory

Valid   Dirty    Tag

Block can map to any slot
Tag used to identify which block is in which slot
All slots searched in parallel for target
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Tag   22 bit
Word
2 bit

Associative Mapping 64K Cache 
Example

• 22 bit tag stored with each slot in the cache – no more bits for the slot 
line number needed since all tags searched in parallel

• Compare tag field of a target memory address with tag entry in cache 
to check for hit

• Least significant 2 bits of address identify which word is required from 
the block, e.g.:
– Address: FFFFFC = 1111 1111 1111 1111 1111 1100

• Tag: Left 22 bits, truncate on left:
– 11 1111 1111 1111 1111 1111
– 3FFFFF

– Address: 16339C = 0001 0110 0011 0011 1001 1100
• Tag: Left 22 bits, truncate on left:

– 00 0101 1000 1100 1110 0111
– 058CE7

CAMERA Example

• CAMERA simulator for a fully-associative 
cache
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Set Associative Mapping
• Compromise between fully-associative and direct-

mapped cache
– Cache is divided into a number of sets
– Each set contains a number of lines
– A given block maps to any line in a specific set

• Use direct-mapping to determine which set in the cache 
corresponds to a set in memory

• Memory block could then be in any line of that set
– e.g. 2 lines per set

• 2 way associative mapping
• A given block can be in either of 2 lines in a specific set

– e.g. K lines per set
• K way associative mapping
• A given block can be in one of K lines in a specific set
• Much easier to simultaneously search one set than all lines

Set Associative Mapping

• To compute cache set number:
– SetNum = j mod v

• j = main memory block number
• v = number of sets in cache

Block 0

Block 1

Block 2

Block 3

Main Memory

Slot 0

Slot 1

Slot 2

Slot 3

Set 0

Set 1 Block 4

Block 5
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Set Associative Mapping
64K Cache Example

• E.g. Given our 64Kb cache, with a line size of 4 bytes, we have 
16384 lines.  Say that we decide to create 8192 sets, where each set 
contains 2 lines.  Then we need 13 bits to identify a set (213=8192)

• Use set field to determine cache set to look in
• Compare tag field of all slots in the set to see if we have a hit, e.g.:

– Address = 16339C = 0001  0110 0011 0011 1001 1100
• Tag = 0 0010 1100 = 02C
• Set = 0 1100 1110 0111 = 0CE7
• Word = 00  = 0

– Address = 008004 = 0000 0000 1000 0000 0000 0100
• Tag = 0 0000 0001 = 001
• Set = 0 0000 0000 0001 = 0001
• Word = 00 = 0

Tag  9 bit Set  13 bit
Word
2 bit

Two Way Set Associative 
Example

Address
16339C
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CAMERA Example

• CAMERA simulator for a k-way set 
associative cache

K-Way Set Associative

• Two-way set associative gives much 
better performance than direct mapping
– Just one extra slot avoids the thrashing 

problem
• Four-way set associative gives only 

slightly better performance over two-way
• Further increases in the size of the set has 

little effect other than increased cost of the 
hardware!
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Replacement Policy (1)

• The replacement policy is the technique 
we use to determine which line in the 
cache should be thrown out when we want 
to put a new block in from memory

• Direct mapping
– No choice
– Each block only maps to one line
– Replace that line

Replacement Algorithms (2)
Associative & Set Associative

• Algorithm must be implemented in hardware (speed)
• Least Recently used (LRU)

– e.g. in 2 way set associative, which of the 2 block is LRU?
• For each slot, have an extra bit, USE.  Set to 1 when accessed, set 

all others to 0.
– For more than 2-way set associative, need a time stamp for each 

slot - expensive
• First in first out (FIFO)

– Replace block that has been in cache longest
– Easy to implement as a circular buffer

• Least frequently used
– Replace block which has had fewest hits
– Need a counter to sum number of hits

• Random
– Almost as good as LFU and simple to implement
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Write Policy
• So far we’ve only discussed reading memory, 

we may also write back to memory
• If a memory write only updates the cache, 

then the cache is now inconsistent with main 
memory 
– Could cause problems
– Reading in another memory block that maps to the 

same cache line
– I/O device or another processor might directly try 

to read/write to memory

Write through

• Simplest technique to handle the cache 
inconsistency problem - All writes go to main 
memory as well as cache.  

• Multiple CPUs must monitor main memory traffic 
(snooping) to keep local cache local to its CPU 
up to date in case another CPU also has a copy 
of a shared memory location in its cache

• Simple but Lots of traffic
• Slows down writes



22

Write Back
• Updates initially made in cache only

– Dirty bit is set when we write to the cache, this indicates the 
cache is now inconsistent with main memory

• Dirty bit for cache slot is cleared when update occurs
• If cache line is to be replaced, write the existing cache 

line to main memory if dirty bit is set before loading the 
new memory block

Cache Performance

• Two measures that characterize the performance of a 
cache are the hit ratio and the effective access time

(Num times referenced words are in cache) 
Hit Ratio =   -----------------------------------------------------

(Total number of memory accesses)

(# hits)(TimePerHit)+(# misses) (TimePerMiss)
Eff. Access Time =  --------------------------------------------------------

(Total number of memory accesses)



23

Cache Performance Example

• Direct-Mapped Cache
Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Memory
0-15

Slot 0

Slot 1

Slot 2

Slot 3

Cache Memory

Cache access time = 80ns
Main Memory time = 2500 ns

16-31

32-47

48-63

64-79

80-95

…

Cache Performance Example
• Sample program executes from memory location 48-

95 once. Then it executes from 15-31 in a loop ten 
times before exiting.
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Once:
48-95

Ten Times:
15-31

Cache Performance Example

• Hit Ratio: 213 / 218 = 97.7%
• Effective Access Time:  

((213)*(80ns)+(5)(2500ns)) / 218 = 136 ns

• Although the hit ratio is high, the effective 
access time in this example is 75% longer than 
the cache access time due to the large amount 
of time spent during a cache miss

• What sequence of main memory block accesses 
would result in much worse performance?


