
1

Memory and Caching

Chapter 6

Chapter 6 Objectives

• Master the concepts of hierarchical memory
organization.

• Understand how each level of memory contributes
to system performance, and how the performance
is measured.

• Master the concepts behind cache memory
– Skipping virtual memory, memory segmentation, paging

and address translation. Cover in OS class.

2

The Memory Hierarchy

• This storage organization can be thought of as a pyramid:

Hierarchy List

• Registers
• L1 Cache
• L2 Cache
• Main memory
• Disk cache
• Disk
• Optical
• Tape

• As one goes down
the hierarchy
– Decreasing cost per

bit
– Increasing capacity
– Increasing access time
– Decreasing frequency

of access of the
memory by the
processor – locality of
reference

3

Locality of Reference

• Temporal Locality
– Programs tend to reference the same memory locations at a

future point in time
– Due to loops and iteration, programs spending a lot of time

in one section of code
• Spatial Locality

– Programs tend to reference memory locations that are near
other recently-referenced memory locations

– Due to the way contiguous memory is referenced, e.g. an
array or the instructions that make up a program

– Sequential Locality
• Instructions tend to be accessed sequentially

• Locality of reference does not always hold, but it
usually holds

Semiconductor Memory

• RAM – Random Access Memory
– Misnamed as all semiconductor memory is

random access
– Read/Write
– Volatile
– Temporary storage
– Two main types: Static or Dynamic

4

Dynamic RAM
• Bits stored as charge in semiconductor

capacitors
• Charges leak
• Need refreshing even when powered
• Simpler construction
• Smaller per bit
• Less expensive
• Need refresh circuits (every few milliseconds)
• Slower
• Main memory

Static RAM

• Bits stored as on/off switches via flip-flops
• No charges to leak
• No refreshing needed when powered
• More complex construction
• Larger per bit
• More expensive
• Does not need refresh circuits
• Faster
• Cache

5

So you want fast?

• It is possible to build a computer which
uses only static RAM (the memory used to
build a cache)

• This would be very fast
• This would need no cache

– How can you cache cache?
• This would cost a very large amount

Read Only Memory (ROM)

• Permanent storage
• Microprogramming
• Library subroutines
• Systems programs (BIOS)
• Function tables

6

Types of ROM
• Written during manufacture

– Very expensive for small runs
• Programmable (once)

– PROM
– Needs special equipment to program

• Read “mostly”
– Erasable Programmable (EPROM)

• Erased by UV

– Electrically Erasable (EEPROM)
• Takes much longer to write than read

– Flash memory
• Erase whole memory electrically

Cache
• Small amount of fast memory
• Sits between normal main memory and CPU
• May be located on CPU chip or module

– An entire blocks of data is copied from memory to the cache
because the principle of locality tells us that once a byte is
accessed, it is likely that a nearby data element will be
needed soon.

7

Cache operation - overview

• CPU requests contents of memory location
• Check cache for this data
• If present, get from cache (fast)
• If not present, read required block from main

memory to cache
• Then deliver from cache to CPU
• Cache includes tags to identify which block of

main memory is in each cache slot

Cache Definitions
• This leads us to some definitions.

– A hit is when data is found at a given memory level.
– A miss is when it is not found.
– The hit rate is the percentage of time data is found at

a given memory level.
– The miss rate is the percentage of time it is not.
– Miss rate = 1 - hit rate.
– The hit time is the time required to access data at a

given memory level.
– The miss penalty is the time required to process a

miss, including the time that it takes to replace a block
of memory plus the time it takes to deliver the data to
the processor.

8

Cache Example
• Consider a Level 1 cache capable of holding

1000 words with a 0.1 µs access time. Level 2
is memory with a 1 µs access time.

• If 95% of memory access is in the cache:
– T=(0.95)*(0.1 µs) + (0.05)*(0.1+1 µs) = 0.15 µs

• If 5% of memory access is in the cache:
– T=(0.05)*(0.1 µs) + (0.95)*(0.1+1 µs) = 1.05 µs

• Want as many cache hits as possible!

0% 100%

0.1 µs

1.1 µs

Block 0
Block 1
…

Block (2n/K)-1

Cache Design
• If memory contains 2n addressable words

– Memory can be broken up into blocks with K words per block.
Number of blocks = 2n / K

– Cache consists of C lines or slots, each consisting of K words
– C << M
– How to map blocks of memory to lines in the cache?

Memory

Cache Line 0
Line 1
…

Line C-1

9

Cache Design

• Size
• Mapping Function
• Replacement Algorithm
• Write Policy
• Block Size
• Number of Caches

Size does matter

• Cost
– More cache is expensive

• Speed
– More cache is faster
– Up to a point - diminishing returns as cache

increases in size
• Also can take longer to search the more cache

there is

10

Mapping Function
• Suppose we have the following configuration

– Word size of 1 byte
– Cache of 16 bytes
– Cache line / Block size is 2 bytes

• i.e. cache is 16/2 = 8 (23) lines of 2 bytes per line
• Will need 8 addresses for a block in the cache

– Main memory of 64 bytes
• 6 bit address needed to reference 64 bytes
• (26= 64)
• 64 bytes / 2 bytes-per-block ! 32 Memory Blocks

– Somehow we have to map the 32 memory blocks to
the 8 lines in the cache. Multiple memory blocks will
have to map to the same line in the cache!

Mapping Function – 64K Cache
Example

• Suppose we have the following configuration
– Word size of 1 byte
– Cache of 64 KByte
– Cache line / Block size is 4 bytes

• i.e. cache is 64 Kb / 4 bytes = 16,384 (214) lines of 4 bytes
– Main memory of 16MBytes

• 24 bit address
• (224=16M)
• 16Mb / 4bytes-per-block ! 4 Meg of Memory Blocks

– Somehow we have to map the 4 Meg of blocks in
memory onto the 16K of lines in the cache. Multiple
memory blocks will have to map to the same line in
the cache!

11

Direct Mapping
• Simplest mapping technique - each block of

main memory maps to only one cache line
– i.e. if a block is in cache, it must be in one specific

place
• Formula to map a memory block to a cache line:

– i = j mod c
• i=Cache Line Number
• j=Main Memory Block Number
• c=Number of Lines in Cache

– i.e. we divide the memory block by the number of
cache lines and the remainder is the cache line
address

Direct Mapping with C=4
• Shrinking our example to a cache line size of 4

slots (each slot/line/block still contains 4 words):
– Cache Line Memory Block Held

• 0 0, 4, 8, …
• 1 1, 5, 9, …
• 2 2, 6, 10, …
• 3 3, 7, 11, …

– In general:
• 0 0, C, 2C, 3C, …
• 1 1, C+1, 2C+1, 3C+1, …
• 2 2, C+2, 2C+2, 3C+2, …
• 3 3, C+3, 2C+3, 3C+3, …

12

Direct Mapping with C=4

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Main
MemorySlot 0

Slot 1

Slot 2

Slot 3

Cache Memory

Each slot contains K words
Tag: Identifies which memory block is in the slot
Valid: Set after block copied from memory to
indicate the cache line has valid data

Valid Dirty Tag

Direct Mapping Address Structure
• There is an easy way to compute

i = j mod c
based upon the bits in the address we are trying to access

• Address is in three parts
– Least Significant w bits identify unique word within a cache line

• w must be enough bits to address a specific word in a cache line; e.g. if 4
words per cache line, then we need 2 bits for w

– Next Significant s bits specify which line this address maps into
• s must be enough bits to address a specific line in the cache; e.g. if 16

cache lines, then we need 4 bits for s
– Remaining t bits used as a tag to identify the memory block

Tag t Line or Slot s Word w

2 4 2

8 bit address

13

Direct Mapping Address 64K Cache Example

Tag t Line or Slot s Word w

8 14 2

• Given a 24 bit address (to access 16Mb)
• 2 bit word identifier (4 byte block)
• Need 14 bits to address the cache slot/line
• Leaves 8 bits left for tag (=22-14)

• No two blocks in the same line have the same Tag field
• Check contents of cache by finding line and checking Tag
• Also need a Valid bit and a Dirty bit

– Valid – Indicates if the slot holds a block belonging to the program being
executed

– Dirty – Indicates if a block has been modified while in the cache. Will
need to be written back to memory before slot is reused for another block

V D

11

cache only memory address

Direct Mapping Example, 64K
Cache

Main MemoryCache Memory
Addr Tag W0 W1 W2 W3

0
1
2
3
4
5
..
..

214-1

Addr (hex) Data

000000 F1
000001 F2
000002 F3
000003 F4
000004 AB
…
1B0004 11
1B0005 12
1B0006 13
1B0007 14

00 F1 F2 F3 F4

1B0007 = 0001 1011 0000 0000 0000 0111
Word = 11, Line = 0000 0000 0000 01, Tag= 0001 1011

1B 11 12 13 14 Line 0

Line 1

Line 1

14

Cache Example

• The website for the textbook includes a
link to CAMERA, a cache simulator

• Example for direct-mapped cache

Direct Mapping pros & cons

• Simple
• Inexpensive
• Fixed location for given block

– If a program accesses 2 blocks that map to
the same line repeatedly, cache misses are
very high – condition called thrashing

15

Fully Associative Mapping
• A fully associative mapping scheme can overcome the

problems of the direct mapping scheme
– A main memory block can load into any line of cache
– Memory address is interpreted as tag and word
– Tag uniquely identifies block of memory
– Every line’s tag is examined for a match
– Also need a Dirty and Valid bit

• But Cache searching gets expensive!
– Ideally need circuitry that can simultaneously examine all tags

for a match
– Lots of circuitry needed, high cost

• Need replacement policies now that anything can get
thrown out of the cache (will look at this shortly)

Associative Mapping Example

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Main
MemorySlot 0

Slot 1

Slot 2

Slot 3

Cache Memory

Valid Dirty Tag

Block can map to any slot
Tag used to identify which block is in which slot
All slots searched in parallel for target

16

Tag 22 bit
Word
2 bit

Associative Mapping 64K Cache
Example

• 22 bit tag stored with each slot in the cache – no more bits for the slot
line number needed since all tags searched in parallel

• Compare tag field of a target memory address with tag entry in cache
to check for hit

• Least significant 2 bits of address identify which word is required from
the block, e.g.:
– Address: FFFFFC = 1111 1111 1111 1111 1111 1100

• Tag: Left 22 bits, truncate on left:
– 11 1111 1111 1111 1111 1111
– 3FFFFF

– Address: 16339C = 0001 0110 0011 0011 1001 1100
• Tag: Left 22 bits, truncate on left:

– 00 0101 1000 1100 1110 0111
– 058CE7

CAMERA Example

• CAMERA simulator for a fully-associative
cache

17

Set Associative Mapping
• Compromise between fully-associative and direct-

mapped cache
– Cache is divided into a number of sets
– Each set contains a number of lines
– A given block maps to any line in a specific set

• Use direct-mapping to determine which set in the cache
corresponds to a set in memory

• Memory block could then be in any line of that set
– e.g. 2 lines per set

• 2 way associative mapping
• A given block can be in either of 2 lines in a specific set

– e.g. K lines per set
• K way associative mapping
• A given block can be in one of K lines in a specific set
• Much easier to simultaneously search one set than all lines

Set Associative Mapping

• To compute cache set number:
– SetNum = j mod v

• j = main memory block number
• v = number of sets in cache

Block 0

Block 1

Block 2

Block 3

Main Memory

Slot 0

Slot 1

Slot 2

Slot 3

Set 0

Set 1 Block 4

Block 5

18

Set Associative Mapping
64K Cache Example

• E.g. Given our 64Kb cache, with a line size of 4 bytes, we have
16384 lines. Say that we decide to create 8192 sets, where each set
contains 2 lines. Then we need 13 bits to identify a set (213=8192)

• Use set field to determine cache set to look in
• Compare tag field of all slots in the set to see if we have a hit, e.g.:

– Address = 16339C = 0001 0110 0011 0011 1001 1100
• Tag = 0 0010 1100 = 02C
• Set = 0 1100 1110 0111 = 0CE7
• Word = 00 = 0

– Address = 008004 = 0000 0000 1000 0000 0000 0100
• Tag = 0 0000 0001 = 001
• Set = 0 0000 0000 0001 = 0001
• Word = 00 = 0

Tag 9 bit Set 13 bit
Word
2 bit

Two Way Set Associative
Example

Address
16339C

19

CAMERA Example

• CAMERA simulator for a k-way set
associative cache

K-Way Set Associative

• Two-way set associative gives much
better performance than direct mapping
– Just one extra slot avoids the thrashing

problem
• Four-way set associative gives only

slightly better performance over two-way
• Further increases in the size of the set has

little effect other than increased cost of the
hardware!

20

Replacement Policy (1)

• The replacement policy is the technique
we use to determine which line in the
cache should be thrown out when we want
to put a new block in from memory

• Direct mapping
– No choice
– Each block only maps to one line
– Replace that line

Replacement Algorithms (2)
Associative & Set Associative

• Algorithm must be implemented in hardware (speed)
• Least Recently used (LRU)

– e.g. in 2 way set associative, which of the 2 block is LRU?
• For each slot, have an extra bit, USE. Set to 1 when accessed, set

all others to 0.
– For more than 2-way set associative, need a time stamp for each

slot - expensive
• First in first out (FIFO)

– Replace block that has been in cache longest
– Easy to implement as a circular buffer

• Least frequently used
– Replace block which has had fewest hits
– Need a counter to sum number of hits

• Random
– Almost as good as LFU and simple to implement

21

Write Policy
• So far we’ve only discussed reading memory,

we may also write back to memory
• If a memory write only updates the cache,

then the cache is now inconsistent with main
memory
– Could cause problems
– Reading in another memory block that maps to the

same cache line
– I/O device or another processor might directly try

to read/write to memory

Write through

• Simplest technique to handle the cache
inconsistency problem - All writes go to main
memory as well as cache.

• Multiple CPUs must monitor main memory traffic
(snooping) to keep local cache local to its CPU
up to date in case another CPU also has a copy
of a shared memory location in its cache

• Simple but Lots of traffic
• Slows down writes

22

Write Back
• Updates initially made in cache only

– Dirty bit is set when we write to the cache, this indicates the
cache is now inconsistent with main memory

• Dirty bit for cache slot is cleared when update occurs
• If cache line is to be replaced, write the existing cache

line to main memory if dirty bit is set before loading the
new memory block

Cache Performance

• Two measures that characterize the performance of a
cache are the hit ratio and the effective access time

(Num times referenced words are in cache)
Hit Ratio = ---

(Total number of memory accesses)

(# hits)(TimePerHit)+(# misses) (TimePerMiss)
Eff. Access Time = --

(Total number of memory accesses)

23

Cache Performance Example

• Direct-Mapped Cache
Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Memory
0-15

Slot 0

Slot 1

Slot 2

Slot 3

Cache Memory

Cache access time = 80ns
Main Memory time = 2500 ns

16-31

32-47

48-63

64-79

80-95

…

Cache Performance Example
• Sample program executes from memory location 48-

95 once. Then it executes from 15-31 in a loop ten
times before exiting.

24

Once:
48-95

Ten Times:
15-31

Cache Performance Example

• Hit Ratio: 213 / 218 = 97.7%
• Effective Access Time:

((213)*(80ns)+(5)(2500ns)) / 218 = 136 ns

• Although the hit ratio is high, the effective
access time in this example is 75% longer than
the cache access time due to the large amount
of time spent during a cache miss

• What sequence of main memory block accesses
would result in much worse performance?

