CSs221
Debugging with CodeView, Visual Studio, WinDbg

Debuggers are extremely useful tools to help you uncover errors in your program. There
are different debuggers that come with MASM:

Rea mode debugger: CodeView
Protected mode debugger: Visua Studio or WinDbg

Let’s start by taking a closer look at using CodeView. Microsoft CodeView isthe
debugger that comes with MASM.

If you have followed the instructions to install MASM, you should aready have
CodeView set up as the debugger for 16 bit programs through the T)ools menu on
TextPad. If you want to debug a program named “myfile.asm” directly from DOS then
first assemble it and you can debug it using codeview by typing “cv myfile” (without the
asm) in the same directory as the source files.

First, assemble the program and then invoke the debugger from TextPad. You should be
shown with a window that appears something like that below. Y ou may have additional
windows. You can close or resize them as you wish, and open new ones from the
W)indows menu.

W WINNTY System32i.cmd.exe =10a] x|

dit earch wn ata ptions all indows elp
sourcel CE:IP debugtut.asm [?Iregister
bytel db 1 EnX = 08080008
byte2 db A PERRAARA
wordl dw 1234h PBREBARGE
word2 dw B
string db "Thiz iz a string”,. @

55 55)5 15 5)
AABRA1 ARG
G155]5]5]5]5)
a5 5]s]5]5]515)
[5La 15151515]515)
BA56

.code
main proc

moy ax,. Bdata
mov ds, ax

mov ax,. B

mov al,. bytel
mov hyte2, al
moy cx,. wordl
mov word2,. cx

exit EI PL
main endp PO NG

[a]s s)5 5 5)
L5515 15 Pan o)

end main

— =

L

<F8=Trace> <F1B=8tep> <F5=Go> <F3=81 Fmt>

| find it most useful to have the registers, source, and command windows available. You
can type commands into the command window or you can also invoke most commands
by selecting them from the menu bar.

| also find it helpful to put the window into full-screen mode (alt- Enter). If you wish to
use graphical mode and want to use the mouse to resize windows, you may need to right-
click the window, go to properties, and make sure that Insert and Quick-Edit modes are
disabled.

Here is a sample progam we will use to illustrate the CodeView debugger:

Titl e CodeView Tutorial Exanple
I NCLUDE 1 rvinel6.inc

.data

bytel db 1

byte2 db 0

wordl dw 1234h

word2 dw 0

string db "This is a string", O

. code

dummy proc
nov bx, OFFFFh

ret
dummy endp

mai n proc
nov ax, @lata
mov ds, ax

mov ax, O
nov al, bytel
nov byte2, al

cal |l dunmmy
mov cx, wordl
mov wor d2, cXx
exit

mai n endp

end main

Some of the most commonly used commands are:

F5 — Execute program to the end

F8 — Step one line, go into procedure calls

F10 — Step one line, but go over procedure calls
F9 — Set or Clear a breakpoint on the cursor line

Here are some format specifiers you can use in conjunction with displaying data:

d = signed decimal integer

u = unsigned decimal integer

X = hexadecimal integer

f = floating point decimal

¢ = single ASCII character

s=sdtring , terminated by NULL (0) byte

Here are some commands you can type into the Command Window:

? <expression>, <format>

Display an expression or identifier using the above format
DB <identifier>

Display memory from address of the identifier as bytes

DA <identifier>

Display memory from address of the identifier as ascii
DW <identifier>

Display memory from address of the identifier as words
DI <identifier>

Display memory from address of the identifier as signed ints
EB <identifier>

Enter a new byte value into identifier
EW <identifer>

Enter a new word vaue into identifier
W? <identifier>, <format>

Watch an identifier’ s value using the specified format

For strings, use & in front of the identifier to get the identifier's address

Examples:
? bytel - Displays bytel using the default, which is decimal
?wordl - Displays word1 using the default, which is decimal
?wordl, x - Displays wordl as hex
?string - Displaysfirst byte of string
dastring - Displays entire string
dw string - Displays string as groups of words
ew wordl - Enter a new word value into wordl
eb bytel - Enter a new byte value into bytel
w?word2 - Add awatch on word?2

w?word2, x - Add awatch on word2, display in hex
w?&string - Add awatch on astring
w?&string, s - Add awatch on a string, display asastring

For the sample program, try:

Select O)ptions, S)ource and experiment with changing the view from source to
mixed to machine.

Display the registers window and resize it on the right.

Examine variables using the ? and da commands

Trace the program and note changes in the registers and variables using the ?
commands.

Restart the program which will reset the IP to the beginning of the program.
From the Data menu, add byte2 and word2 as watch expressions. Re-trace the
program and you should see these variables change. Thisis very useful for
checking on programs that accidentally overwrite variables.

Add string variables to the watch using the w? & string commands. Note that if
you use the menu, you don’t get the specify the format, so strings don’t come out
quite right in the watch menu.

Add a breakpoint, restart the program, and illustrate that the program will stop
execution at the breakpoint.

Debugging with Visual Studio

For protected mode programs, you can use the Visual Studio debugger if Visual Studio is
installed on your system. Let’'s step through the basic features of the Visual Studio
debugger using the following sample program:

Title Protected Mode Tutorial Exanple
I NCLUDE I rvine32.inc

.data

bytel db 1

byte2 db 0

wor dl dw 1234h

word2 dw 0

string db "This is a string", O

. code

durmmy proc
nov bx, OFFFFh
ret

dumy endp

mai n proc
mov ax, O
nov al, bytel
nov byte2, al
cal |l dunmmy
nmov cx, wordl
nmov wor d2, cx
exit

mai n endp

end main

First, build the program. Then, select the debugging option from TextPad. This will
launch Visual Studio and bring up an empty screen that should look somewhat like the
following:

*. Microsoft Yisual C++

JJ Fle Edit Yiew Insert Project Build Tools wWindow Help

| zud b el [BEE | Rfesnoe | m)
I |

[Z3 DEBUGTUT.EXE

Not avery helpful screen. But if you press F11, or select B)uild, Start D)ebug, S)tep
Into, then this will start the debugger and allow you to step through the program:

Build Tools ‘Window Help

i @ Compile CErHET hal_moves ~
H Build DEBUGTIT.EXE =7
Rebuild Al -]

Batch Build. ..

Zlean

Start Debug
Debugger Remaote Connection. .. TJ.} .

MY Rum ko Cursor @heH-FLD

Attach to Process, .

Execute DEBUGTUT.EXE Chrl+FS

Seb Ackive Confiquration, .

The debugger will show your code and stop at the firgt line:

B debugtut.asm

Title CodeView Tutorial Example
INCLUDE Irwinedl.inc

.data

bytel db 1

bytez db O

wordl dw 1234h

word2 dw 0

=tring db "Thi= 1= a =s=tring". 0

.code

dummy proc H
mnov bz, OFFFFh EAX - 00000000 EBX = 7FFOFOOO
ret ECX = 00000101 EDX = FFFFFFFF

dumny endp ESI = 00000000 EDI = 00000000
. EIP = 00401021 ESP = 0012FFC4

main proc EEP = 0012FFF0 EFL = 00000246 CS = 001B

= nov ax, 0 DS = 0023 ES = 0023 S5 = 0023 FS = 0038

mov al. bytel G5 = 0000 OV=0 UP=0 EI=1 PL=0 ZR=1 AC=0
now byte?, al PE=1 C¥=0
call dummy STO = +0.00000000000000000=+0000
nov cx, wordl ST1 = +0.00000000000000000e+0000
gi‘_lftmrd?- CH STZ = +0.00000000000000000=+0000 |

mnain endp

end main

The yellow arrow indicates the line of code that is about to be executed. It has not been
executed yet. You will find to be most useful the contents of all the registers.

To step through the program, use:
F10 - step to next instruction, but over any procedures
F11 - step to next instruction, but inside any procedures

Alternately you can use the menu or hit the icons:

R

The icons represent stepping into, stepping over, stepping out of, or running to the cursor
location.

To inspect the contents of variables, at any point in time you can hover over the variable
or use the watch window. If you hover the mouse over a variable, a pop-up window will
display the contents of that variable. In the example below, | have hovered the mouse
over the variable “bytel” and the display shows that it holds the value 1 in hex:

main proc
mow ax, 0O
mov al. bytel
now byte 0 T
caﬂ_dmmumﬂ_mmll

To use the watch window, enter the name of the variable you would like to see. You can
right-click on the Vaue field to show the value in either decimal or hex. In the example
below, | have entered the names for bytel, wordl, and string:

Z|[Name Yalue

A brtel o=zo01 '1°
wordl Nxl234
string Nz54 'T'

Notice that the string variable only displays the first character. To show the whole string,
enter &string. & in front of any variable will display memory starting at that address:

ﬂNamE Yalue
A hytel 0=01 '1°
wordl O=1234

O=x00404006 "This

Sometimes you might not want to step through every line of code, but want the program
to stop at some specific line. Thisis caled abreakpoint. To set a breakpoint, move the
cursor to the line you want execution to stop, and hit the icon with the hand on it.
Alternately, you can right-click the mouse in the border of the code window. A

breakpoint will be visible with ared dot. In this example, | set a breakpoint inside the
dummy procedure:

.code

dumny proc
mow bz, O0FFFFh
ret

dumny =ndp

If I run the code by hitting F5 or selecting “ Go”

Then the program will halt when execution reaches this line of code:

.code
dumnny proc
& mov b=, OFFFFh
ret
dunny endp

Thisisindicated by the yellow arrow over the red breakpoint. At this point, you are free
to inspect variables in the procedure, step through the code line by line, etc. To remove a
breakpoint right-click it again or click on the Hand icon to toggle the breakpoint.

When you are through debugging, simply close Visual Studio. The program may ask if
you wish to save any project information — select no unless for some reason you wish to
resume this debugging session at another time. Y ou can then continue editing your

program in TextPad. If you wish to make any changes to your program in TextPad, you
must make sure that any debugging sessions are closed before rebuilding your program.

There are many other options available within Visual Studio. | encourage you to explore
them on your own. The other debug windows are visible from the V)iew, D)ebug
Windows menu:

Yiew Insert Project Debug Tools ‘Window Help

FgllSu:reen L |E|ﬁ%ﬂ|ﬁa
Workspace Alk+0 ﬂl
Cutput Alk+2
Debug Windaws Wakch Alt+3 !
Refresh Call Stack Alb+7
Vst . Mermory alk+6
El'jr;pe]r-tles Alk+Enter variables e
22 db 0 Reqisters Alk+5
dl dw 1234h Disassembly Alt+8

d2 dw 0

Debugging with WinDbg

For protected mode programs, you can use the WinDbg program, which is freely
available from Microsoft. See the web page installation instructions for how to download
and install WinDbg with TextPad.

Assuming that you have WinDbg installed, let’s step through its basic features. WinDbg
operates in amanner similar to Visual Studio’s debugger.

A tutoria on using WinDbg written by the author of your textbook is aso available
online at http://www.nuvisionmiami.com/books/asm/debug/windbg/index.htm

Let’s step through WinDbg using the same sample program we had for Visua Studio:

Title Protected Mode Tutorial Exanple
| NCLUDE I rvine32.inc

.data

bytel db 1

byte2 db O

wordl dw 1234h

word2 dw 0

string db "This is a string", O

. code

dummy proc
nmov bx, OFFFFh

ret
dumy endp

mai n proc
I NT 3
mov ax, O
nov al, bytel
nov byte2, al

cal |l dunmmy
nmov cx, wordl

nmov wor d2, cXx
exit
mai n endp

end main

You will notice one significant difference. Theline INT 3 must be added as the first line
in the program. Thisis specific to the way WinDbg works. The instruction forces your
program to halt and transfer control to the debugger.

Next, build the program. Then, select the debugging option from TextPad. Thiswill
launch WinDbg and bring up an empty screen that should ook somewhat like the

following:

& debugtut.exe - WinDbg:6.0.0017.0

File Edit Wiew Debug Window Help
2| pl=e Rl Blelelo] o BESEEEE0[E R 2

Microszoft (R) Windows Debugger Version 6.0.0017.0
Copyright (o) Hicrozoft Corporation. All rights reserved.

CommandLine: debugtut. e=xe

Symbol =earch path i=: %*%¥% Invalid #*##% : Verify _HT SYMBOL_PATH =etting
Executable =search path i1=:

ModLoad: 00400000 00407000 debugtut exe

ModLoad: 77f£80000 77f£b000 ntdll . dll

ModLoad: 77e80000 77{£36000 CoWWINHNT~=y=tem32~KERNEL32 dl1

(o4 ad48): Brealk instruction exception — code 80000003 {(fir=t chance)
2ax=00000000 ebx=7ff{df000 ecx=00000101 ed=z=f{{ffffff e=1=77f83920 =di1=77£82b95
2ip=00401021 e=p=0012ffcd =bp=0012fff0 iopl=0 nv up 2i pl zr na po nc
c==001b ===0023 d==0023 e==0023 £f==0032 g==0000 efl=00000246
*#%% TARNING: Unable to wverify checksum for debugtut. exe

debugtut Imain:

00401021 co int 3

This default view is not too useful. Select the source code view from the menu by

selecting W)indow and then the name of your source code file. In this case, my source
code file is named debugtut.asm:

| window Help
Cascade
Tile Horizonkally
Tile Yertically
Arrange
Arrange Icons
Close All Source Windows

. Auko-arrange
] Arrange All Yindows
Cverlay Source
v futormatically Open Disassembly

* v 1 Command

Thiswill display the source code inside the debugger. The line that is bolded is where
the debugger has stopped. The next instruction is the one that will be executed. In the
picture below, we are about to execute the instruction “mov ax,0”:

B C: homeworks'debugtut.asm

Title CodeView Tutorial Example
IHCLUDE Irwined?.inc

.data

bytel db 1

byted db 0O

wordl dw 1234k

word? dw 0

ztring db "Thi= i= a =string". 0

.code

dumny proc
mow b=z, OFFFFhL
ret

dumny endp

main proc
int 3
now ax, [
mov al. bytel
mov byte?, al
call dummy
mow CE. wordl
mov word?, c=
eEit

main endp

end main

To step through the program, use:
F10 - step to next instruction, but over any procedures
F11 - step to next instruction, but inside any procedures

Alternately you can use the menu or hit the icons:

MY

The icons represent stepping into, stepping over, stepping out of, or running to the cursor
location.

To view the contents of registers, bring up the registers window. Thisis available from
the V)iew menu:

View Debug Window Help

ommand Alk+1
Wakch Alb+2
Locals Alt+3
Reqisters

Memory Alk+5
Zall Stack, BlE+6
Disassembly alk+7
Scratch Pad AlE+8

Processes and Threads Alk+3

Asyou can see, there are several other windows available to view. We'll only talk about
the Registers and the Watch window. Upon selecting the registers window, a window
will appear with the contents of each register:

-l
Cuskomize, .. |

Feg |Halue -
g= I}

f= 38

=] 23

d= 23

edi I}

2=1 I}

ebx dEfdf00n
ed=x o o o o o o
ECH 101

[=T=hod I}

ebp 12£££0
eip 401021

The list of registers may be much longer than what we have discussed in class. That is
because this list also contains floating point and MM X/SSE registers that are available on
more recent processors. As you step through the program, the registers that have
changed value will be updated in red in this window.

To view the contents of variables, use the Watch window, also available from the main
menu under V)iew. Enter the name of the variable you are interested in, and its contents
will be displayed. To view strings, use an& in front of the string just as with Visual
Studio. In the example below, we are looking at the contents of bytel, wordl, and string:

Typecastl OFFsetsl

Hame |?alue
byrtel O=01 '
wordl 0=x1234
H é=tring O=00404006 "Thi= i= a =string’

To set abreakpoint, click the ﬂl hand icon on the line that you want execution to stop.
The line will turn red. In the picture below, | have set a breakpoint in the beginning of
the dummy procedure:

x. OFFFFh

dummy endp

Run the program by hitting F5 or selecting “Go” from the Debug menu:

| bebug Window Help

(0 Fa

The program will run and if it encounters a line with a breakpoint, execution will stop. In
the picture below, we have halted execution in the dummy procedure as indicated by the
purple highlighting:

=, OFFFFh

dumnmny endp

We can now step through the program, view any local variables, etc.

When you are finished debugging your program, simply close the WinDbg program.

Y ou can then resume editing your program in TextPad. If you wish to make any changes
to your program in TextPad, you must make sure that any debugging sessions are closed
before rebuilding your program.

Aswith Visua Studio, there are many other options available. Fedl free to explore the
program to see these other debugging options. Some of these are explained in more
detail on the online tutorial. Y ou may also get full instructions on WinDbg from
Microsoft’'s MSDN library.

Conclusions

Some people are hesitant to use a debugger because of the learning curve that is involved.
However, if you take the time to learn the debugger this will be atremendous aid in
tracking down errorsin your program. The alternative is to scatter print statements and
DUMPREGS calls throughout the program, or to try variations of the code until you can
figure out what iswrong. Often these bugs can be discovered immediately with the help
of adebugger.

| strongly encourage you to become familiar with a debugger for assembly and also for
use in high-level languages such as Java or C++.

