
CS221
Debugging with CodeView, Visual Studio, WinDbg

Debuggers are extremely useful tools to help you uncover errors in your program. There
are different debuggers that come with MASM:

Real mode debugger: CodeView
Protected mode debugger: Visual Studio or WinDbg

Let’s start by taking a closer look at using CodeView. Microsoft CodeView is the
debugger that comes with MASM.

If you have followed the instructions to install MASM, you should already have
CodeView set up as the debugger for 16 bit programs through the T)ools menu on
TextPad. If you want to debug a program named “myfile.asm” directly from DOS then
first assemble it and you can debug it using codeview by typing “cv myfile” (without the
asm) in the same directory as the source files.

First, assemble the program and then invoke the debugger from TextPad. You should be
shown with a window that appears something like that below. You may have additional
windows. You can close or resize them as you wish, and open new ones from the
W)indows menu.

I find it most useful to have the registers, source, and command windows available. You
can type commands into the command window or you can also invoke most commands
by selecting them from the menu bar.

I also find it helpful to put the window into full-screen mode (alt-Enter). If you wish to
use graphical mode and want to use the mouse to resize windows, you may need to right-
click the window, go to properties, and make sure that Insert and Quick-Edit modes are
disabled.

Here is a sample program we will use to illustrate the CodeView debugger:

Title CodeView Tutorial Example
INCLUDE Irvine16.inc

.data
byte1 db 1
byte2 db 0
word1 dw 1234h
word2 dw 0
string db "This is a string", 0

.code
dummy proc
 mov bx, 0FFFFh
 ret
dummy endp

main proc
 mov ax, @data
 mov ds, ax

 mov ax, 0
 mov al, byte1
 mov byte2, al
 call dummy
 mov cx, word1
 mov word2, cx
 exit
main endp

end main

Some of the most commonly used commands are:

 F5 – Execute program to the end
 F8 – Step one line, go into procedure calls
 F10 – Step one line, but go over procedure calls
 F9 – Set or Clear a breakpoint on the cursor line

Here are some format specifiers you can use in conjunction with displaying data:

 d = signed decimal integer
 u = unsigned decimal integer
 x = hexadecimal integer
 f = floating point decimal
 c = single ASCII character
 s = string , terminated by NULL (0) byte

Here are some commands you can type into the Command Window:

 ? <expression>, <format>
 Display an expression or identifier using the above format
 DB <identifier>
 Display memory from address of the identifier as bytes

 DA <identifier>
 Display memory from address of the identifier as ascii
 DW <identifier>
 Display memory from address of the identifier as words
 DI <identifier>
 Display memory from address of the identifier as signed ints
 EB <identifier>
 Enter a new byte value into identifier
 EW <identifer>
 Enter a new word value into identifier
 W? <identifier>, <format>
 Watch an identifier’s va lue using the specified format
 For strings, use & in front of the identifier to get the identifier’s address

Examples:

 ? byte1 - Displays byte1 using the default, which is decimal
 ? word1 - Displays word1 using the default, which is decimal
 ? word1, x - Displays word1 as hex
 ? string - Displays first byte of string
 da string - Displays entire string
 dw string - Displays string as groups of words
 ew word1 - Enter a new word value into word1
 eb byte1 - Enter a new byte value into byte1
 w? word2 - Add a watch on word2
 w? word2, x - Add a watch on word2, display in hex
 w? &string - Add a watch on a string
 w? &string, s - Add a watch on a string, display as a string

For the sample program, try:

• Select O)ptions, S)ource and experiment with changing the view from source to
mixed to machine.

• Display the registers window and resize it on the right.
• Examine variables using the ? and da commands
• Trace the program and note changes in the registers and variables using the ?

commands.
• Restart the program which will reset the IP to the beginning of the program.
• From the Data menu, add byte2 and word2 as watch expressions. Re-trace the

program and you should see these variables change. This is very useful for
checking on programs that accidentally overwrite variables.

• Add string variables to the watch using the w? &string commands. Note that if
you use the menu, you don’t get the specify the format, so strings don’t come out
quite right in the watch menu.

• Add a breakpoint, restart the program, and illustrate that the program will stop
execution at the breakpoint.

Debugging with Visual Studio

For protected mode programs, you can use the Visual Studio debugger if Visual Studio is
installed on your system. Let’s step through the basic features of the Visual Studio
debugger using the following sample program:

Title Protected Mode Tutorial Example
INCLUDE Irvine32.inc

.data
byte1 db 1
byte2 db 0
word1 dw 1234h
word2 dw 0
string db "This is a string", 0

.code
dummy proc
 mov bx, 0FFFFh
 ret
dummy endp

main proc
 mov ax, 0
 mov al, byte1
 mov byte2, al
 call dummy
 mov cx, word1
 mov word2, cx
 exit
main endp

end main

First, build the program. Then, select the debugging option from TextPad. This will
launch Visual Studio and bring up an empty screen that should look somewhat like the
following:

Not a very helpful screen. But if you press F11, or select B)uild, Start D)ebug, S)tep
Into, then this will start the debugger and allow you to step through the program:

The debugger will show your code and stop at the first line:

The yellow arrow indicates the line of code that is about to be executed. It has not been
executed yet. You will find to be most useful the contents of all the registers.

To step through the program, use:
 F10 - step to next instruction, but over any procedures
 F11 - step to next instruction, but inside any procedures

Alternately you can use the menu or hit the icons:

The icons represent stepping into, stepping over, stepping out of, or running to the cursor
location.

To inspect the contents of variables, at any point in time you can hover over the variable
or use the watch window. If you hover the mouse over a variable, a pop-up window will
display the contents of that variable. In the example below, I have hovered the mouse
over the variable “byte1” and the display shows that it holds the value 1 in hex:

To use the watch window, enter the name of the variable you would like to see. You can
right-click on the Value field to show the value in either decimal or hex. In the example
below, I have entered the names for byte1, word1, and string:

Notice that the string variable only displays the first character. To show the whole string,
enter &string. & in front of any variable will display memory starting at that address:

Sometimes you might not want to step through every line of code, but want the program
to stop at some specific line. This is called a breakpoint. To set a breakpoint, move the
cursor to the line you want execution to stop, and hit the icon with the hand on it.
Alternately, you can right-click the mouse in the border of the code window. A

breakpoint will be visible with a red dot. In this example, I set a breakpoint inside the
dummy procedure:

If I run the code by hitting F5 or selecting “Go”

Then the program will halt when execution reaches this line of code:

This is indicated by the yellow arrow over the red breakpoint. At this point, you are free
to inspect variables in the procedure, step through the code line by line, etc. To remove a
breakpoint right-click it again or click on the Hand icon to toggle the breakpoint.

When you are through debugging, simply close Visual Studio. The program may ask if
you wish to save any project information – select no unless for some reason you wish to
resume this debugging session at another time. You can then continue editing your
program in TextPad. If you wish to make any changes to your program in TextPad, you
must make sure that any debugging sessions are closed before rebuilding your program.

There are many other options available within Visual Studio. I encourage you to explore
them on your own. The other debug windows are visible from the V)iew, D)ebug
Windows menu:

Debugging with WinDbg

For protected mode programs, you can use the WinDbg program, which is freely
available from Microsoft. See the web page installation instructions for how to download
and install WinDbg with TextPad.

Assuming that you have WinDbg installed, let’s step through its basic features. WinDbg
operates in a manner similar to Visual Studio’s debugger.

A tutorial on using WinDbg written by the author of your textbook is also available
online at http://www.nuvisionmiami.com/books/asm/debug/windbg/index.htm

Let’s step through WinDbg using the same sample program we had for Visual Studio:

Title Protected Mode Tutorial Example
INCLUDE Irvine32.inc

.data
byte1 db 1
byte2 db 0
word1 dw 1234h
word2 dw 0
string db "This is a string", 0

.code
dummy proc
 mov bx, 0FFFFh
 ret
dummy endp

main proc
 INT 3

 mov ax, 0
 mov al, byte1
 mov byte2, al
 call dummy
 mov cx, word1
 mov word2, cx
 exit
main endp

end main

You will notice one significant difference. The line INT 3 must be added as the first line
in the program. This is specific to the way WinDbg works. The instruction forces your
program to halt and transfer control to the debugger.

Next, build the program. Then, select the debugging option from TextPad. This will
launch WinDbg and bring up an empty screen that should look somewhat like the
following:

This default view is not too useful. Select the source code view from the menu by
selecting W)indow and then the name of your source code file. In this case, my source
code file is named debugtut.asm:

This will display the source code inside the debugger. The line that is bolded is where
the debugger has stopped. The next instruction is the one that will be executed. In the
picture below, we are about to execute the instruction “mov ax,0”:

To step through the program, use:
 F10 - step to next instruction, but over any procedures
 F11 - step to next instruction, but inside any procedures

Alternately you can use the menu or hit the icons:

The icons represent stepping into, stepping over, stepping out of, or running to the cursor
location.

To view the contents of registers, bring up the registers window. This is available from
the V)iew menu:

As you can see, there are several other windows available to view. We’ll only talk about
the Registers and the Watch window. Upon selecting the registers window, a window
will appear with the contents of each register:

The list of registers may be much longer than what we have discussed in class. That is
because this list also contains floating point and MMX/SSE registers that are available on
more recent processors. As you step through the program, the registers that have
changed value will be updated in red in this window.

To view the contents of variables, use the Watch window, also available from the main
menu under V)iew. Enter the name of the variable you are interested in, and its contents
will be displayed. To view strings, use an & in front of the string just as with Visual
Studio. In the example below, we are looking at the contents of byte1, word1, and string:

To set a breakpoint, click the hand icon on the line that you want execution to stop.
The line will turn red. In the picture below, I have set a breakpoint in the beginning of
the dummy procedure:

Run the program by hitting F5 or selecting “Go” from the Debug menu:

The program will run and if it encounters a line with a breakpoint, execution will stop. In
the picture below, we have halted execution in the dummy procedure as indicated by the
purple highlighting:

We can now step through the program, view any local variables, etc.

When you are finished debugging your program, simply close the WinDbg program.
You can then resume editing your program in TextPad. If you wish to make any changes
to your program in TextPad, you must make sure that any debugging sessions are closed
before rebuilding your program.

As with Visual Studio, there are many other options available. Feel free to explore the
program to see these other debugging options. Some of these are explained in more
detail on the online tutorial. You may also get full instructions on WinDbg from
Microsoft’s MSDN library.

Conclusions

Some people are hesitant to use a debugger because of the learning curve that is involved.
However, if you take the time to learn the debugger this will be a tremendous aid in
tracking down errors in your program. The alternative is to scatter print statements and
DUMPREGS calls throughout the program, or to try variations of the code until you can
figure out what is wrong. Often these bugs can be discovered immediately with the help
of a debugger.

I strongly encourage you to become familiar with a debugger for assembly and also for
use in high- level languages such as Java or C++.

