
CS221
Irvine Link Library, Procedures

Using the Irvine Link Library

The Irvine link library contains several useful routines to input data, output data, and
perform several tasks that one would normally have to use many operating system calls to
complete. In actuality, the Irvine library is simply an interface to these OS calls (e.g., it
invokes either DOS calls or Windows 32 library routines).

This library is called irvine32.lib (for 32 bit protected mode) and irvine16.lib (for 16 bit
real mode) and should have been installed when you installed the CD-ROM from the
Irvine book. Chapter 5 contains a full list of the library routines. We will only cover a
few basic ones here.

Most of what you will use in the Irvine link library are various procedures. To invoke a
procedure use the format:

 call procedureName

The call will push the IP onto the stack, and when the procedure returns, it will be popped
off the stack and continue executing where we left off, just like a normal procedure in
C++ or Java. The procedures should handle saving and restoring any registers that might
be used. It is important to keep in mind that these are all high-level procedures – they
were written by Irvine. That is, an x86 machine does not come standard with the
procedures available. Consequently, if you ever wish to use these routines in other
settings, you might need to write your own library routines.

Parameters are passed to Irvine’s procedures through registers. Here are some of the
procedures available:

Clrscr Clears the screen, moves the cursor to the upper-left corner

Crlf Writes a carriage return / linefeed to the display

Gotoxy Locates the cursor at the specified X/Y coordinates

on the screen.
 DH = row (0-24), DL = column (0-79)

Writechar Writes a single character to the current cursor location
 AL contains the ASCII character

DumpRegs Display the contents of the registers

ReadChar Waits for a keypress. AH = key scan code

AL = ASCII code of key pressed

Let’s see these in action:

Include Irvine32.inc
.code
main proc
 call Clrscr
 mov dh, 24
 mov dl, 79 ; bottom-right corner
 call Gotoxy ; Move cursor there
 mov al, '*'
 call WriteChar ; Write '*' in bottom right

 call ReadChar ; Character entered by user is in AL
 mov dh, 10
 mov dl, 10
 call Gotoxy
 call WriteChar ; Output the character entered at 10,10
 call CrLf ; Carriage return to line 11

 call DumpRegs ; Output registers

 ; output a row of '&'s to the screen, minus first column
 mov al, '&'
 mov cx, 79
 mov dh, 5 ; row 5
L1: mov dl, cl
 call Gotoxy
 call WriteChar
 loop L1

 call CrLf
 exit
main endp
end main

Here are some more:

Randomize Initialize random number seed

Random32 Generate a 32 bit random integer and return it in eax

RandomRange Generate random integer from 0 to eax-1

Readint Waits for/reads a ASCII string and interprets as a
 a 32 bit value. Stored in EAX.

Readstring Waits for/reads a ASCII string.
 Input: EDX contains the offset to store the string
 ECX contains max character count
 Output: EAX contains number of chars input

Writeint Outputs EAX as a signed integer

Writestring Write a null-terminated string.
 Input: EDX points to the strings offset

Here is another code sample:

Include Irvine32.inc

.data
myInt DWORD ?
myChar BYTE ?
myStr BYTE 30 dup(0)
myPrompt BYTE "Enter a string:",0
myPrompt2 BYTE "Enter a number:",0

.code
main proc
 ; Output 2 random numbers
 call Randomize ; Only call randomize once
 call Random32
 call WriteInt ; output EAX as int
 call Crlf
 move ax, 1000
 call RandomRange
 call WriteInt ; output EAX as int, will be 0-999
 call Crlf

 ; Get and display a string
 mov edx, offset myprompt
 call Writestring ; Display prompt
 mov ecx, 30 ; Max length of 30
 mov edx, offset myStr
 call Readstring
 call Writestring ; Output what was typed
 Call Crlf

 ; Get a number and display it
 mov edx, offset myprompt2
 call Writestring ; Display prompt
 call ReadInt ; Int stored in EAX
 call Crlf
 call WriteInt
 call Crlf

 exit
main endp
end main

There are other procedures for displaying memory, command line arguments, hex, text
colors, and dealing with binary values. See Chapter 5 of the textbook for details.

Procedures and Interrupts

As programs become larger and written by many programmers, it quickly becomes
difficult to manage writing code in one big procedure. It becomes much more useful to
break a problem up into many modules, where each module is typically a function. This
is the idea behind modular programming that you should have seen in CS201 and CS101.

When a procedure is invoked, the current instruction pointer is pushed onto the stack and
then the IP is loaded with the address of the procedure. When the procedure exits, the old
instruction pointer is popped off the stack and copied into the instruction pointer.
Consequently, we then continue operation from the next instruction after the procedure
invocation.

In this fashion, the stack is serving as a temporary storage area for the instruction pointer.
Although the IP is pushed and popped off the stack automatically, you can also use the
stack yourself to save your own variables.

The instruction to push something on the stack is PUSH:

 PUSH register
 PUSH memval

Two registers, CS and EIP, cannot be used as operands (why?)

To get values off the stack, use POP:

 POP register ; top of stack goes into register
 POP memval ; top of stack goes into memory location

For example:

 PUSH eax
 POP ebx

Essentially copies AX into BX by way of the stack.

A common purpose of the stack is to save a temporary value. For example, let’s say that
we want to make a nested loop, where the outer loop goes 10 times and the inner loop
goes 5 times:

 MOV ecx, 10
 L1: …
 … ; stuff for outer loop
 MOV ecx, 5 ; Setup inner loop
 L2: …
 … ; stuff for inner loop
 LOOP L2
 …
 LOOP L1

The obvious problem here is that we are wiping out the counter ECX for the outer loop in
the inner loop. An easy solution is to save the value in ECX before we execute the inner
loop, and then restore it when we finish the inner loop:

 MOV ecx, 10
 L1: …
 … ; stuff for outer loop
 PUSH ecx ; Save ECX value in outer loop
 MOV ecx, 5 ; Setup inner loop
 L2: …
 … ; stuff for inner loop
 LOOP L2
 POP ECX ; Restore ECX value in outer loop
 …
 LOOP L1

Another common place where values are pushed on the stack temporarily is when
invoking a function call that wipes out register values we want. For example, the Irvine
Readstring function expects EDX to point to the offset of the string in memory. The
number of characters input by the user is returned in AX. If these registers contained
values we wanted to save, we could push them onto the stack and restore them later after
the Readstring operation is finished.

Most high-level languages pass parameters to function by pushing them on the stack.
The function then accesses the parameters as offsets from the stack pointer. This has the
advantage that an arbitrary (up to the size of free space on the stack) number of
parameters can be passed to the function. In contrast, the Irvine Link Library and DOS
interrupt routines pass parameters through registers. This has the disadvantage that a
limited number of values can be passed, and we might also need to save the registers if
the function changes them in some way. However, it is faster to pass parameters in
registers than to pass them on the stack.

One final PUSH and POP instruction is quite useful:

 PUSHA : Push ALL 16 bit registers on the stack, except for Flags
 Code Segment EIP, and Data Segment
 POPA : Pops ALL 16 bit registers off and restores them
 PUSHAD : Pushes all extended registers except above
 POPAD : Pops all extended registers

If we want to save the flags registers, there is a special instruction for it:

 PUSHF : Push Flags
 POPF : Pop Flags

Writing Procedures

You have already been defining your own procedures – the main procedure works just
like any other procedure.

The format to define a procedure is:

 <Procedure-Name> proc
 …
 … ; code for procedure
 …
 ret ; Return from the procedure
 <Procedure-Name> endp

The keyword proc indicates the beginning of a procedure, and the keyword endp signals
the end of the procedure. Your procedure must use the RET instruction when the
procedure is finished. This causes the procedure to return by popping the instruction
pointer off the stack.

Note that all other registers are not automatically pushed on the stack. Therefore, any
procedures you write must be careful not to overwrite anything it shouldn’t. You may
want to push the registers that are used just in case, e.g.:

 MyProc PROC
 Push EAX ; If we use EAX, push it to save its value
 Push EBX
 …
 … ; Use EAX
 …
 POP EBX ; Restore original value in EBX
 POP EAX ; Restore original value in EAX
 MyProc ENDP

To invoke a procedure, use call:

 call procedure-name

Here is an example of a program that uses a procedure to compute EAX raised to the
EBX power (assuming EBX is a relatively small positive integer). In this example we
save all registers affected or used by the procedure, so it is a self-contained module
without unknown side-effects to an outside calling program:

Include Irvine32.inc

.data

.code
main proc
 mov eax, 3
 mov ebx, 9
 call Power ; Compute 3^9
 call WriteInt

 exit
main endp

power proc
 push ecx
 push edx ; MUL changes EDX as a side effect
 push esi
 mov esi, eax
 mov ecx, ebx
 mov eax, 1
L1: mul esi ; EDX:EAX = EAX * ESI.
 loop L1
 pop esi
 pop edx
 pop ecx
 ret
power endp

end main

Note that we can also make recursive calls, just like we can in high-level languages.
However, if we do so, we must push parameters on the stack so that there are separate
copies of the variables for each invocation of the procedure. We can access these
variables as offsets from the Stack Pointer; typically the Base Pointer is used for this
purpose.

Software Interrupts

Technically, a software interrupt is not really a “true” interrupt at all. It is just a software
routine that is invoked like a procedure when some hardware interrupt occurs. However,
we can use software interrupts to perform useful tasks, typically those provided by the
operating system or BIOS.

Here, we will look at software interrupts provided by MS-DOS. A similar process exists
for invoking Microsoft Windows routines (see Chapter 11). Since we will be using MS-
DOS, our programs must be constructed in real mode.

Software interrupts in DOS are invoked with the INT instruction. The format is:

 INT <number>

Number indicates which entry we want out of the interrupt vector table. For example:

These interrupt handlers typically expect parameters to be passed in certain registers. For
example, DOS interrupt 21h with AH=2 indicates that we want to invoke the code to
print a character.

Here are some commonly used interrupt services

INT 10h - Video Services
INT 16h - Keyboard services
INT 1Ah - Time of day
INT 1Ch - User timer, executed 18.2 times per second
INT 21h - DOS services

See chapter 13, chapter 15, appendix C, and the web page linked from the CS221 home
page for more information about all of these interrupts, particularly the DOS interrupt
services.

mov…
int 10h
add…

F000:F065

sti
Cld
Push es
…
…
…
iret

F000:F065

Calling Program Interrupt Handler

Interrupt Vector
Table Entry for 10h

BIOS-Level Video Control (INT 10h) – Chapter 15.4-15.5

Let’s say a little bit more about using the video interrupt. If we are in real mode then Int
10h allows us to select different video modes. Early computers supported only
monochrome, but later versions allowed for CGA, EGA, and VGA resolutions. With the
different modes we have different ways to display text (in various colors, for example),
and different resolutions for graphics.

For example:

 mov ah, 0 ; 0 in AH means to set video mode
 mov al, 6 ; 640 x 200 graphics mode
 int 10h

 mov ah, 0
 mov al, 3 ; 80x25 color text
 int 10h

 mov ah, 0
 mov al, 13h ; linear mode 320x200x256 color graphics
 int 10h

Looking at the last mode, this turns the screen to graphics mode with a whopping
320x200 resolution and 256 colors. This means that each color is represented by one
byte of data. There is a color palette stored on the video card that maps each number
from 0-255 onto some color (e.g., 0=black, 1=dark grey, etc.). We can set these colors
using the OUT instruction, but for our purposes we will just use the default palette.

Video memory begins at segment A0000:0000. This memory location is mapped to the
graphics video screen, just like we saw that memory at B800:0000 was mapped to the
text video screen.

The byte located at A000:0000 indicates the color of the pixel in the upper left hand
corner (coordinate x=0,y=0). If we move over one byte to A000:0001, this indicates the
color of the pixel at coordinate (x=1, y=0). Since this graphics mode gives us a total of
320 horizontal pixels, the very last pixel in the upper right corner is at memory address
A000:013F, where 13F = 319 in decimal. The coordinate is (x=319, y=0). The next
memory address corresponds to the next row; A000:0140 is coordinate (x=0, y=1). The
memory map fills the rows from left to right and columns from top to bottom:

Not only can we access pixels on the screen by referring to the memory address, but by
storing data into those memory locations, we draw pixels on the screen. Can you figure
out what the following program does?

Include Irvine16.inc
.data
mynum BYTE 3

.code
main proc
 mov ah, 0 ; Setup 320x200x256 graphics mode
 mov al, 13h
 int 10h

 mov ax, 0A000h ; Move DS to graphics video buffer
 mov ds, ax

 mov ax, 128
 mov cx, 320
 mov bx, 0
L1: mov [bx], al ; Stores AL into DS:BX
 inc bx
 loop L1

 mov cx, 320
 mov ax, 120
 mov bx, 320*199
L2: mov [bx], ax
 inc bx
 loop L2

 call Readchar

 mov ax, @data ; Restore DS to our data segment
 mov ds, ax ; Necessary if we want
 ; to access any variables
 ; since we changed DS to A000

 mov al, mynum ; Stores DS:MyNum into AL
 mov ah, 0 ; Restore text video mode
 int 10h

 exit
main endp

end main

Notice how we must restore DS to @data (the location of our data segment) if we ever
want to access variables defined in our segment. This is because we changed DS to A000
to access video memory, and unless we change it back then we cannot access variables in
our data segment.

An alternate technique is to use the Extra Segment register. We can set ES to the
segment we want, and then reference addresses relative to ES instead of the default of
DS.

Here is an example which also shows what colors are available by default:

Include Irvine16.inc
.data
.code
main proc
 mov ax, @data ; set up DS register in case we
 mov ds, ax ; want to access any variables declared
 ; in .data.

 mov ah, 0 ; Setup 320x200x256 graphics mode
 mov al, 13h
 int 10h

 mov ax, 0A000h ; Move ES to graphics video buffer
 mov es, ax

 mov cx, 255 ; Only loop up to 255 times
 mov bx, 0
L1: mov es:[bx], bl ; Move BL into [BX] instead of 128
 inc bx ; Note use of ES to override default DS
 loop L1

 call ReadChar

 mov ah, 0 ; Restore text video mode
 mov al, 3
 int 10h

 exit
main endp

end main

