
1

25-Feb-07

Java 1.5

New Features

2

Versions of Java

Java 1

Java 2

Java 5.0

Oak: Designed for embedded devices

Java 1.1: Adds inner classes and a completely

new event-handling model

Java 1.2: Includes “Swing” but no new syntax

Java 1.3: Additional methods and packages, but

no new syntax

Java 1.4: More additions and the assert statement

Java 1.5: Generics, enums, new for loop,

and other new syntax

Java: Original, not very good version (but

it had applets)

2

java.applet, java.awt, java.io, java.lang, java.net, java.util

java.math, java.rmi, java.security, java.sql, java.text, java.beans

javax.accessibility, javax.swing, org.omg

javax.naming, javax.sound,

javax.transaction

java.nio, javax.imageio,

javax.net, javax.print,

javax.security, org.w3c

javax.activity,
javax.
management

Java 1.0
8 packages

212 classes

Java 1.1
23 packages

504 classes

Java 1.2
59 packages

1520 classes

Java 1.3
77 packages
1595 classes

Java 1.4
103 packages

2175 classes

Java 1.5
131 packages

2656 classes

New Events

Inner class

Object

Serialization

Jar Files

International

Reflection

JDBC

RMI

JFC/Swing

Drag and

Drop

Java2D

CORBA

JNDI

Java Sound

Timer

Regular Exp

Logging
Assertions
NIO

4

New features

� Generics
� Compile-time type safety for collections without casting

� Enhanced for loop
� Syntactic sugar to support the Iterator interface

� Autoboxing/unboxing
� Automatic wrapping and unwrapping of primitives

� Typesafe enums
� Provides all the well-known benefits of the Typesafe Enum pattern

� Static import
� Lets you avoid qualifying static members with class names

� Scanner and Formatter
� Finally, simplified input and formatted output

3

5

New methods in java.util.Arrays

� Java now has convenient methods for printing arrays:

� Arrays.toString(myArray) for 1-dimensional arrays

� Arrays.deepToString(myArray) for multidimensional arrays

� Java now has convenient methods for comparing arrays:

� Arrays.equals(myArray, myOtherArray) for 1-dimensional arrays

� Arrays.deepEquals(myArray, myOtherArray) for multidimensional

arrays

� It is important to note that these methods do not override the

public String toString() and public boolean equals(Object)

instance methods inherited from Object

� The new methods are static methods of the java.util.Arrays class

6

Generics

� A generic is a method that is recompiled with different types as
the need arises

� The bad news:
� Instead of saying: ArrayList words = new ArrayList();

� You'll have to say:
ArrayList<String> words = new ArrayList<String>();

� The good news:
� Replaces runtime type checks with compile-time checks

� No casting; instead of
String title = (String) words.get(i);

you use
String title = words.get(i);

� Some classes and interfaces that have been “genericized” are:
Vector, ArrayList, LinkedList, Hashtable, HashMap, Stack,
Queue, PriorityQueue, Dictionary, TreeMap and TreeSet

4

7

Generic Iterators

� To iterate over generic collections, it’s a good idea to

use a generic iterator
� List<String> listOfStrings = new LinkedList<String>();

...

for (Iterator<String> i = listOfStrings.iterator(); i.hasNext();) {

String s = i.next();

System.out.println(s);

}

8

Writing generic methods

� private void printListOfStrings(List<String> list) {
for (Iterator<String> i = list.iterator(); i.hasNext();) {

System.out.println(i.next());
}

}

� This method should be called with a parameter of type
List<String>, but it can be called with a parameter of
type List
� The disadvantage is that the compiler won’t catch errors;

instead, errors will cause a ClassCastException

� This is necessary for backward compatibility

� Similarly, the Iterator need not be an Iterator<String>

5

9

Type wildcards

� Here’s a simple (no generics) method to print out any list:

� private void printList(List list) {
for (Iterator i = list.iterator(); i.hasNext();) {

System.out.println(i.next());
}

}

� The above still works in Java 1.5, but now it generates warning
messages

� Java 1.5 incorporates lint (like C lint) to look for possible problems

� You should eliminate all errors and warnings in your final code,
so you need to tell Java that any type is acceptable:

� private void printListOfStrings(List<?> list) {
for (Iterator<?> i = list.iterator(); i.hasNext();) {

System.out.println(i.next());
}

}

10

Writing your own generic types

� public class Box<T> {
private List<T> contents;

public Box() {
contents = new ArrayList<T>();

}

public void add(T thing) { contents.add(thing); }

public T grab() {
if (contents.size() > 0) return contents.remove(0);
else return null;

}

� Sun’s recommendation is to use single capital letters (such as T)
for types

6

11

New for statement

� The syntax of the new statement is

for(type var : array) {...}

or for(type var : collection) {...}

� Example:

for(float x : myRealArray) {

myRealSum += x;

}

� For a collection class that has an Iterator, instead of
for (Iterator iter = c.iterator(); iter.hasNext();)

((TimerTask) iter.next()).cancel();

you can now say
for (TimerTask task : c)

task.cancel();

12

Auto boxing and unboxing

� Previously, Java didn’t let you use a primitive value where an
object is required--you need a “wrapper”

� myVector.add(new Integer(5));

� Similarly, you can’t use an object where a primitive is required--
you need to “unwrap” it

� int n = ((Integer)myVector.lastElement()).intValue();

� Java 1.5 makes this automatic:

� Vector<Integer> myVector = new Vector<Integer>();
myVector.add(5);
int n = myVector.lastElement();

� Other extensions make this as transparent as possible

� For example, control statements that previously required a boolean (if,
while, do-while) can now take a Boolean

7

13

Enumerations

� An enumeration, or “enum,” is simply a set of constants

to represent various values

� Here’s the old way of doing it

� public final int SPRING = 0;

public final int SUMMER = 1;

public final int FALL = 2;

public final int WINTER = 3;

� This is a nuisance, and is error prone as well

� Here’s the new way of doing it:

� enum Season { WINTER, SPRING, SUMMER, FALL }

14

enums are classes

� An enum is actually a new type of class

� You can declare them as inner classes or outer classes

� You can declare variables of an enum type and get type safety and

compile time checking

� Each declared value is an instance of the enum class

� Enums are implicitly public, static, and final

� You can compare enums with either equals or ==

� enums extend java.lang.Enum and implement java.lang.Comparable

� Hence, enums can be sorted

� Enums override toString() and provide valueOf()

� Example:

� Season season = Season.WINTER;

� System.out.println(season); // prints WINTER

� season = Season.valueOf("SPRING"); // sets season to Season.SPRING

8

15

Advantages of the new enum

� Enums provide compile-time type safety

� int enums don't provide any type safety at all: season = 43;

� Enums provide a proper name space for the enumerated type

� With int enums you have to prefix the constants (for example,

seasonWINTER or S_WINTER) to get anything like a name space.

� Enums are robust

� If you add, remove, or reorder constants, you must recompile, and then

everything is OK again

� Enum printed values are informative

� If you print an int enum you just see a number

� Because enums are objects, you can put them in collections

� Because enums are classes, you can add fields and methods

16

Enums really are classes

 public enum Coin {

 // enums can have instance variables

private final int value;

 // An enum can have a constructor, but it isn’t public

Coin(int value) { this.value = value; }

 // Each enum value you list really calls a constructor

PENNY(1), NICKEL(5), DIME(10), QUARTER(25);

 // And, of course, classes can have methods

public int value() { return value; }

}

9

17

Other features of enums

� values() returns an array of enum values

� Season[] seasonValues = Season.values();

� switch statements can now work with enums

� switch (thisSeason) { case SUMMER: ...; default: ...}

� You must say case SUMMER:, not case Season.SUMMER:

� It’s still a very good idea to include a default case

� It is possible to define value-specific class bodies, so

that each value has its own methods

18

varargs

� You can create methods and constructors that take a

variable number of arguments

� public void foo(int count, String... cards) { body }

� The “...” means zero or more arguments (here, zero or more

Strings)

� Call with foo(13, "ace", "deuce", "trey");

� Only the last argument can be a vararg

� To iterate over the variable arguments, use the new for loop:

for (String card : cards) { loop body }

10

19

Static import facility

� import static org.iso.Physics.*;

class Guacamole {

public static void main(String[] args) {

double molecules = AVOGADROS_NUMBER * moles;

...

}

}

� You no longer have to say Physics.AVOGADROS_NUMBER

� Are you tired of typing System.out.println(something); ?

� Do this instead:

� import static java.lang.System.out;

� out.println(something);

20

java.util.Scanner

� Finally, Java has a fairly simple way to read input

� Scanner sc = new Scanner(System.in);

� boolean b = sc.nextBoolean();

� byte by = sc.nextByte();

� short sh = sc.nextShort();

� int i = sc.nextInt();

� long l = sc.nextLong();

� float f = sc.nextFloat();

� double d = sc.nextDouble();

� String s = sc.nextLine();

� By default, whitespace acts as a delimiter, but you can define

other delimiters with regular expressions

11

21

java.util.Formatter

� Java now has a way to produce formatted output, based

on the C printf statement

� String line;

int i = 1;

double v = 3.14159;

while ((line = reader.readLine()) != null) {

System.out.printf("Line %d: %s %3.2f %n", i++, line, v);

}

� There are about 45 different format specifiers (such as

%d and %s), most of them for dates and times

22

Additional features

� Annotations

� Allow you to mark methods as overridden, or deprecated, or

to turn off compiler warnings for a method

� You can create other kinds of annotations

� Threading

� There are many new features for controlling synchronization

and threading, new ways of using semaphore

12

23

Metadata

� Many APIs require a fair amount of boilerplate. For example, when you define
a JAX-RPC Web Service you provide both an interface and an implementation
class:

public interface CoffeeOrderIF extends java.rmi.Remote {

public Coffee [] getPriceList()

throws java.rmi.RemoteException;

public String orderCoffee(String name, int quantity)

throws java.rmi.RemoteException;

}

public class CoffeeOrderImpl implements CoffeeOrderIF {

public Coffee [] getPriceList() {

...

}

public String orderCoffee(String name, int quantity) {

...

}

}

24

Metadata

� With the metadata facility, you don't have to write all of this
yourself. You just annotate the code to let a tool know which
methods are remotely accessible, and the tool generates the above
code:

import javax.xml.rpc.*;

public class CoffeeOrder {

@Remote public Coffee [] getPriceList() {

...

}

@Remote public String orderCoffee(String name, int quantity)
{

...

}

}

13

25

Closing comments

� Java 1.5 was released in September 2004

� I’ve just touched on the new features

� Most of the Java 1.5 extensions are designed for ease

of use, but unfortunately not for ease of learning

� All things change...

� They just change a lot faster in computer science

� If you want to be a software developer you will have to keep

up with many of these changes on your own!

� Recommendation: Install and learn Java 5

