Functional Programming in Scheme

CS331
Chapter 10

Functional Programming

• Online textbook: http://www.htdp.org/
• Original functional language is LISP
 – LISt Processing
 – The list is the fundamental data structure
 – Developed by John McCarthy in the 60’s
 • Used for symbolic data processing
 • Example apps: symbolic calculations in integral and differential calculus, circuit design, logic, game playing, AI
 • As we will see the syntax for the language is extremely simple
 – Scheme
 • Descendant of LISP
Functional Languages

• “Pure” functional language
 – Computation viewed as a mathematical function mapping inputs to outputs
 – No notion of state, so no need for assignment statements (side effects)
 – Iteration accomplished through recursion

• In practicality
 – LISP, Scheme, other functional languages also support iteration, assignment, etc.
 – We will cover some of these “impure” elements but emphasize the functional portion

• Equivalence
 – Functional languages equivalent to imperative
 • Core subset of C can be implemented fairly straightforwardly in Scheme
 • Scheme itself implemented in C
 • Church-Turing Thesis

Lambda Calculus

• Foundation of functional programming
• Developed by Alonzo Church, 1941
• A lambda expression defines
 – Function parameters
 – Body
• Does NOT define a name; lambda is the nameless function. Below x defines a parameter for the unnamed function:

\[(\lambda x \cdot x \times x)\]
Lambda Calculus

- Given a lambda expression
 \((\lambda x \cdot x \ast x)\)

- Application of lambda expression
 \(((\lambda x \cdot x \ast x)2) \rightarrow 4\)

- Identity
 \((\lambda x \cdot x)\)

- Constant 2:
 \((\lambda x \cdot 2)\)

Lambda Calculus

- Any identifier is a lambda expression
- If M and N are lambda expressions, then the application of M to N, \((MN)\) is a lambda expression
- An abstraction, written \((\lambda x \cdot M)\) where x is an identifier and M is a lambda expression, is also a lambda expression
Lambda Calculus

\[
\text{LambdaExpression} \rightarrow \text{ident} \mid (\text{MN}) \mid (\lambda \text{ ident} \cdot \text{M}) \\
\text{M} \rightarrow \text{LambdaExpression} \\
\text{N} \rightarrow \text{LambdaExpression}
\]

Examples

\[
x \\
(\lambda x \cdot x) \\
((\lambda x \cdot x)(\lambda y \cdot y))
\]

Lambda Calculus
First Class Citizens

• Functions are \textit{first class citizens}
 – Can be returned as a value
 – Can be passed as an argument
 – Can be put into a data structure as a value
 – Can be the value of an expression

\[
((\lambda x \cdot x \cdot x)(\lambda y \cdot 2)) = (\lambda x \cdot 2 \cdot 2) = 4 \\
((\lambda x \cdot (\lambda y \cdot x + y)) 2 1) = ((\lambda y \cdot 2 + y) 1) = 3
\]
Lambda Calculus

Functional programming is essentially an applied lambda calculus with built in
- constant values
- functions

E.g. in Scheme, we have (* x x) for x*x instead of \(\lambda x \cdot x*x \)

Functional Languages

- Two ways to evaluate expressions
- Eager Evaluation or Call by Value
 - Evaluate all expressions ahead of time
 - Irrespective of if it is needed or not
 - May cause some runtime errors

- Example

 (foo 1 (/ 1 x)) Problem; divide by 0
Lambda Calculus

• Lazy Evaluation
 – Evaluate all expressions only if needed
 (foo 1 (/ 1 x)) ; (/ 1 x) not needed, so never eval’d
 – Some evaluations may be duplicated
 – Equivalent to call-by-name
 – Allows some types of computations not possible in eager evaluation

• Example
 – Infinite lists
 • E.g., Infinite stream of 1’s, integers, even numbers, etc.
 – Replaces tail recursion with lazy evaluation call
 – Possible in Scheme using (force/delay)

Running Scheme for Class

• A version of Scheme called Racket
 (formerly PLT/Dr Scheme) is available on
 the Windows machines in the CS Lab

• Download: http://racket-lang.org/
• Unix, Mac versions also available if desired
Racket

• You can type code directly into the interpreter and Scheme will return with the results:
Make sure right Language is selected

I like to use the “Pretty Big” language choice

Welcome to DrRacket, version 5.2.1 [De].
Language: Beginning Student; memory limit: 128 MB.
> (lambda (k) (* 1 k 1))
lambda: found a lambda that is not a function definition
>

Racket – Loading Code

- You can open code saved in a file. Racket uses the extension “.rkt” so consider the following file “factorial.rkt” created with a text editor or saved from Racket:

1: Open

```
(define factorial
 (lambda (n)
   (cond
     ((= n 1) 1)
     (else (* n (factorial (- n 1))))
   ))
)
```

2: Run

3: Invoke functions
Functional Programming Overview

• Pure functional programming
 – No implicit notion of state
 – No need for assignment statement
 • No side effect
 – Looping
 • No state variable
 • Use Recursion

• Most functional programming languages have side effects, including Scheme
 – Assignments
 – Input/Output

Scheme Programming Overview

- Refreshingly simple
 - Syntax is learned in about 10 seconds

- Surprisingly powerful
 - Recursion
 - Functions as first class objects (can be value of an expression, passed as an argument, put in a data structure)

- Implicit storage management (garbage collection)

- Lexical scoping
 - Earlier LISP.s did not do that (dynamic)

- Interpreter
 - Compiled versions available too
Expressions

- Syntax - Cambridge Prefix
 - Parenthesized
 - \((* 3 4)\)
 - \((* (+ 2 3) 5)\)
 - \((f 3 4)\)
- In general:
 - \((\text{functionName arg1 arg2 } ...\))
- Everything is an expression
 - Sometimes called s-expr (symbolic expr)

Expression Evaluation

- Replace symbols with their bindings
- Constants evaluate to themselves
 - 2, 44, #f
 - No nil in Racket; use ‘()’
 - Nil = empty list, but Racket does have empty
- Lists are evaluated as function calls written in Cambridge Prefix notation
 - \((+ 2 3)\)
 - \((* (+ 2 3) 5)\)
Scheme Basics

• **Atom**
 – Anything that can’t be decomposed further
 • a string of characters beginning with a letter, number or special character other than (or)
 • e.g. 2, #t, #f, “hello”, foo, bar
 • #t = true
 • #f = false

• **List**
 – A list of atoms or expressions enclosed in ()
 – (), empty, (1 2 3), (x (2 3)), (()())

Scheme Basics

• **S-expressions**
 – Atom or list

• () or empty
 – Both atom and a list

• Length of a list
 – Number at the top level
Quote

- If we want to represent the literal list \((a \ b \ c)\)
 - Scheme will interpret this as apply the arguments \(b\) and \(c\) to function \(a\)
- To represent the literal list use “quote”
 - \((\text{quote} \ x) \rightarrow x\)
 - \((\text{quote} \ (a \ b \ c)) \rightarrow (a \ b \ c)\)
- Shorthand: single quotation mark
 - ‘\(a\) == (quote \(a\))
 - ‘\((a \ b \ c)\) == (quote \((a \ b \ c)\))

Global Definitions

- Use define function

 (define \(f\) 20)
 (define evens ‘(0 2 4 6 8))
 (define odds ‘(1 3 5 7 9))
 (define color ‘red)
 (define color blue) ; Error, blue undefined
 (define num \(f\)) ; num = 20
 (define num ‘\(f\)) ; symbol \(f\)
 (define \(s\) “hello world”) ; String
Lambda functions

• Anonymous functions
 – (lambda (<formals>) <expression>)
 – (lambda (x) (* x x))
 – ((lambda (x) (* x x)) 5) \rightarrow 25

• Motivation
 – Can create functions as needed
 – Temporary functions: don’t have to have names

• Can not use recursion

Named Functions

• Use define to bind a name to a lambda expression

 (define square (lambda (x) (* x x)))
 (square 5)

• Using lambda all the time gets tedious; alternate syntax:

 (define (<function name> <formals>) <expression1> <expression2> …)

Last expression evaluated is the one returned

 (define (square x) (* x x))
 (square 5) \rightarrow 25
Conditionals

(if <predicate> <expression1> <expression2>)
- Return value is either expr1 or expr2

(cond (P1 E1)
 (P2 E2)
 (P_n E_n)
 (else E_{n+1}))
- Returns whichever expression is evaluated

Common Predicates

• Names of predicates end with ?
 – Number? : checks if the argument is a number
 – Symbol? : checks if the argument is a symbol
 – Equal? : checks if the arguments are structurally equal
 – Null? : checks if the argument is empty
 – Atom? : checks if the argument is an atom
 • Appears undefined in Racket but can define ourselves
 – List? : checks if the argument is a list
Conditional Examples

• (if (equal? 1 2) 'x 'y) ; y
• (if (equal? 2 2) 'x 'y) ; x
• (if (null? '()) 1 2) ; 1
• (cond
 ((equal? 1 2) 1)
 ((equal? 2 3) 2)
 (else 3)) ; 3
• (cond
 ((number? 'x) 1)
 ((null? 'x) 2)
 ((list? '(a b c)) (+ 2 3)) ; 5
)

Dissecting a List

• Car : returns the first argument
 – (car '(2 3 4))
 – (car '((2) 4 4))
 – Defined only for non-null lists
• Cdr : (pronounced “could-er”) returns the rest of the list
 – Racket: list must have at least one element
 – Always returns a list
 • (cdr '(2 3 4))
 • (cdr '(3))
 • (cdr '((3))))
• Compose
 • (car (cdr '(4 5 5)))
 • (cdr (car '((3 4))))
Shorthand

- \((\text{cadr } x) = (\text{car } (\text{cdr } x)) \)
- \((\text{cdar } x) = (\text{cdr } (\text{car } x)) \)
- \((\text{caar } x) = (\text{car } (\text{car } x)) \)
- \((\text{cddr } x) = (\text{cdr } (\text{cdr } x)) \)
- \((\text{cadar } x) = (\text{car } (\text{cdr } (\text{car } x))) \)
- … etc… up to 4 levels deep in Racket
- \((\text{cddadr } x) = ? \)

Why Car and Cdr?

- Leftover notation from original implementation of Lisp on an IBM 704
- \(\text{CAR} = \text{Contents of Address part of Register} \)
 – Pointed to the first thing in the current list
- \(\text{CDR} = \text{Contents of Decrement part of Register} \)
 – Pointed to the rest of the list
Building a list

• Cons
 – Cons(tract) a new list from first and rest
 – Takes two arguments
 – Second should be a list
 • If it is not, the result is a “dotted pair” which is typically considered a malformed list
 – First may or may not be a list
 – Result is always a list

Building a list

\[X = 2 \text{ and } Y = (3 \ 4 \ 5) : (\text{cons } x \ y) \rightarrow (2 \ 3 \ 4 \ 5) \]
\[X = () \text{ and } Y = (a \ b \ c) : (\text{cons } x \ y) \rightarrow () \ a \ b \ c \]
\[X = a \text{ and } Y = () : (\text{cons } x \ y) \rightarrow (a) \]

• What is
 – \((\text{cons } 'a \ (\text{cons } 'b \ (\text{cons } 'c \ ()))))\)
 – \((\text{cons } (\text{cons } 'a \ (\text{cons } 'b \ ())) \ (\text{cons } 'c \ ())))\)
Numbers

• Regular arithmetic operators are available
 +, -, *, /
 – May take variable arguments
 (+ 2 3 4), (* 4 5 9 11)
• (/ 9 2) → 4.5 ; (quotient 9 2) → 4
• Regular comparison operators are available
 < > <= >= =
 • E.g. (= 5 (+ 3 2)) → #t

= only works on numbers, otherwise use equal?

Example

• Sum all numbers in a list

 (define (sumall list)
 (cond
 ((null? list) 0)
 (else (+ (car list) (sumall (cdr list))))))

 Sample invocation: (sumall '(3 4 5 1))
Example

• Make a list of n identical values

(define (makelist n value)
 (cond
 ((= n 0) '())
 (else
 (cons value (makelist (- n 1) value))
))
)

In longer programs, careful matching parenthesis.

Example

• Determining if an item is a member of a list

(define (member? item list)
 (cond ((null? list) #f)
 ((equal? (car list) item) #t)
 (else (member? item (cdr list)))
))
)

Scheme already has a built-in (member item list) function that returns the list after a match is found
Example

• Remove duplicates from a list

(define (remove-duplicates list)
 (cond ((null? list) '())
 ((member? (car list) (cdr list))
 (remove-duplicates (cdr list)))
 (else
 (cons (car list) (remove-duplicates (cdr list))))
)
)
)