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Semantics

Semantics

• Semantics is a precise definition of the meaning of a 
syntactically and type-wise correct program.

• Ideas of meaning:
– Operational Semantics

• The meaning attached by compiling using compiler C and executing 
using machine M.  Ex: Fortran on IBM 709

– Axiomatic Semantics 
• Formal specification to allow us to rigorously prove what the 

program does with a systematic logical argument

– Denotational Semantics
• Statements as state transforming functions

• We start with an informal, operational model
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Program State

• Definition:  The state of a program is the binding 

of all active objects to their current values.

• Maps: 

1.The pairing of active objects with specific memory 

locations, and

2. The pairing of active memory locations with their 

current values.

• E.g. given i = 13 and j = -1

– Environment = {<i,154>,<j,155>}

– Memory = {<0, undef>, … <154, 13>, <155, -1> …}

• The current statement (portion of an 

abstract syntax tree) to be executed in a 

program is interpreted relative to the 

current state.  

• The individual steps that occur during a 

program run can be viewed as a series of 

state transformations.
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Assignment Semantics

• Three issues or approaches

– Multiple assignment

– Assignment statement vs. expression

– Copy vs. reference semantics

Multiple Assignment

• Example:

• a = b = c = 0;

• Sets all 3 variables to zero.
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Assignment Statement vs. 

Expression
• In most languages, assignment is a 

statement; cannot appear in an 

expression.

• In C-like languages, assignment is an 

expression.

– Example:

– if (a = 0) ... // an error?

– while (*p++ = *q++) ; // strcpy

– while (p = p->next) ...  // ???

Copy vs. Reference Semantics

• Copy: a = b;

– a, b have same value.

– Changes to either have no effect on other.

– Used in imperative languages.

• Reference

– a, b point to the same object.

– A change in object state affects both

– Used by many object-oriented languages.
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State Transformations

• Defn: The denotational semantics of a 
language defines the meanings of abstract 
language elements as a collection of state-
transforming functions.

• Defn: A semantic domain is a set of 
values whose properties and operations 
are independently well-understood and 
upon which the rules that define the 
semantics of a language can be based.

Partial Functions

• State-transforming functions in the 

semantic definition are necessarily partial 

functions

• A partial function is one that is not well-

defined for all possible values of its 

domain (input state)
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C-Like Semantics

• State – represent the set of all program 
states

• A meaning function M is a mapping:

M: Program → State

M: Statement x State → State

M: Expression x State → Value

Meaning Rule - Program

• The meaning of a Program is defined to be 
the meaning of the body when given an 
initial state consisting of the variables of the 
decpart initialized to the undef value 
corresponding to the variable's type.

State M (Program p) {

// Program = Declarations decpart; Statement body

return M(p.body, initialState(p.decpart));

}

public class State extends HashMap { ... }
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State initialState (Declarations d) {

State state = new State( );

for (Declaration decl : d) 

state.put(decl.v,  Value.mkValue(decl.t)); 

return state;

}

Statements

• M: Statement x State → State

• Abstract Syntax

Statement = Skip | Block | Assignment | Loop |

Conditional



8

State M(Statement s, State state) {

if (s instanceof Skip) return M((Skip)s, state);

if (s instanceof Assignment) return M((Assignment)s, state);

if (s instanceof Block) return M((Block)s, state);

if (s instanceof Loop) return M((Loop)s, state);

if (s instanceof Conditional) return M((Conditional)s, state);

throw new IllegalArgumentException( );

}

Meaning Rule - Skip

• The meaning of a Skip is an identity 
function on the state; that is, the state is 
unchanged.

State M(Skip s, State state) {

return state;

}
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Meaning Rule - Assignment

• The meaning of an Assignment statement 
is the result of replacing the value of the 
target variable by the computed value of the 
source expression in the current state

Assignment  = Variable target; 

Expression source

State M(Assignment a, State state) {

return state.onion(a.target, M(a.source, state));

}

// onion replaces the value of target in the map by the source

// called onion because the symbol used is sometimes sigma σ

to represent state
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Meaning Rule - Conditional

• The meaning of a conditional is:

– If the test is true, the meaning of the 

thenbranch;

– Otherwise, the meaning of the elsebranch

Conditional = Expression test;

Statement thenbranch, elsebranch

State M(Conditional c, State state) {

if (M(c.test, state).boolValue( ))

return M(c.thenbranch);

else

return M(e.elsebranch, state);

}
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Expressions

• M: Expression x State → Value

• Expression = Variable | Value | Binary | Unary

• Binary = BinaryOp op; Expression term1, term2

• Unary = UnaryOp op; Expression term

• Variable = String id

• Value = IntValue | BoolValue | CharValue | 

FloatValue

Meaning Rule – Expr in State

• The meaning of an expression in a state is 
a value defined by:

1. If a value, then the value.  Ex: 3

2. If a variable, then the value of the variable in 
the state.

3. If a Binary:
a) Determine meaning of term1, term2 in the state.

b) Apply the operator according to rule 8.8  (perform 
addition/subtraction/multiplication/division)

...
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Value M(Expression e, State state) {

if (e instanceof Value)  return (Value)e;

if (e instanceof Variable)  return (Value)(state.get(e));

if (e instanceof Binary) { 

Binary b = (Binary)e;

return applyBinary(b.op, M(b.term1, state),

M(b.term2, state);

}

...

Formalizing the Type System

• Approach: write a set of function 
specifications that define what it means 
to be type safe

• Basis for functions: Type Map, tm

– tm = { <v1,t1>, <v2,t2>, … <vn,tn>}

– Each vi represents a variable and ti its type

– Example:
• int i,j; boolean p;

• tm = { <i, int>, <j, int>, <p, boolean> }
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Declarations

• How is the type map created?

– When we declare variables

• typing: Declarations  Typemap

– i.e. declarations produce a typemap

• More formally

– typing(Declarations d) =

– i.e. the union of every declaration variable name and type

– In Java we implemented this using a HashMap


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Semantic Domains and States

• Beyond types, we must determine semantically 

what the syntax means

• Semantic Domains are a formalism we will use

– Environment, γ = set of pairs of variables and memory 

locations

• γ = {<i, 100>, <j, 101>}  for i at Addr 100, j at Addr 101

– Memory, μ = set of pairs of memory locations and the 

value stored there

• μ = {<100, 10> , <101, 50>}   for Mem(100)=10, Mem(101)=50

– State of the program, σ = set of pairs of active 

variables and their current values

• σ = {<i,10>, <j, 50>}    for i=10, j=50
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State Example

• x=1; y=2; z=3;
– At this point σ = {<x,1>,<y,2>,<z,3>}

– Notation: σ(y)=2

• y=2*z+3;
– At this point σ = {<x,1>,<y,9>,<z,3>}

• w=4;
– At this point σ = {<x,1>,<y,9>,<z,3>, <w,4>}

• Can also have expressions; e.g. σ(x>0) = true

Overriding Union



State transformation represented using the Overriding Union

X Y =replace all pairs <x,v> whose first member

matches a pair <x,w> from Y by <x,w> and then add to

X any remaining pairs in Y

Example:

}4,,3,,9,,1,{ 

4,,9,{

}3,,2,,1,{
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This will be used for assignment of a variable
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Denotational Semantics

• Meaning function

– Input: abstract class, current state

– Output: new state

function  Meaning :

 states program all ofSet  :

M



ClassM :

Let’s revisit our Meaning Rules and redefine 

them using our more

Formal Denotational Semantics

Denotational Semantics

},,.....,,,,{

)p) (

:

2 





undefvundefvundefv

M(p.body,ProgramM

ProgramM

n1init

init





Meaning of a program:  produce final state

This is just the meaning of the body in an initial state

Java implementation:

State M (Program p) {

// Program = Declarations decpart; Statement body

return M(p.body, initialState(p.decpart));

}

public class State extends HashMap { ... }
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Meaning for Statements

• M : Statement × State  State

• M (Statement s, State σ) =

M ((Skip) s, σ) if s is a Skip

M ((Assignment) s, σ) if s is Assignment

M ((Conditional) s, σ) if s is Conditional

M ((Loop) s, σ) if s is a Loop

M ((Block) s, σ) if s is a Block

Semantics of Skip

• Skip

 ),( StatesSkipM

• Skip statement can’t change the state
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Semantics of Assignment

• Evaluate expression and assign to var

• Examples of:   x=a+b

}),.(,.{) a, (

:





 sourceaMtargetaUStateAssignmentM

AssignmentM

}4,,1,,3,{

}),(,{),;(

}88,,1,,3,{
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

Semantics of Conditional

otherwiseelsebranchcM

trueistestcMifthenbranchcM

StateclConditionaM

),.(       
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If (a>b) max=a; else max=b

;),;(max       

),(),;(max       

),b;max elsea;b)max(a if(
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otherwisebM
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Conditional, continued

}3max,,1,,3,{       

}3max,{       

),(),;(max       

),b;max elsea;b)max(a if(
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Semantics of Block

• Block is just a sequence of statements

• Example for Block b:

fact = fact * i;

i = i – 1;

nn bbbbifbStatementMbBlockM

bif

StatebBlockM

...)),)((,)((       

       

),(
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
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Block example

• b1 = fact = fact * i;

• b2 = i = i – 1;

• M(b,σ) = M(b2,M(b1,σ))

= M(i=i-1,M(fact=fact*i,σ))

= M(i=i-1,M(fact=fact*i,{<i,3>,<fact,1>}))

=M(i=i-1,{<i,3>,<fact,3>})

={<i,2>,<fact,3>}

b

Semantics of Loop

• Loop = Expression test; Statement body

• Recursive definition

otherwise

testlMifbodylMlM

StatelLoopM











      

 trueis ),.()),.(,(       

),(
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Loop Example

• Initial state σ={<N,3>}

fact=1;

i=N;

while (i>1) {

fact = fact * i;

i = i -1;

}

After first two statements, σ = 

{<fact,1>,<N,3>,<i,3>}

Loop Example

σ = {<fact,1>,<N,3>,<i,3>}

M(while(i>1) {…}, σ) 

= M(while(i>1) {…}, M(fact=fact*i; i=i-1;, σ)

= M(while(i>1) {…}, {<fact,3>,<N,3>,<i,2>})

= M(while(i>1) {…}, {<fact,6>,<N,3>,<i,1>})

= M(σ)

={<fact,6>,<N,3>,<i,1>}
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Defining Meaning of Arithmetic 

Expressions for Integers

ValueValueValueOperatoryApplyBinar :

/)(

*

),,(

21

2

1

21

21

21

21

  op ifvvsign
v

v
floor

  op if                  vv

  op if                  vv

  op if                  vv

vValuevValueopOperatoryApplyBinar























First let’s define ApplyBinary, meaning of binary operations:

Denotational Semantics for 

Arithmetic Expressions

),  (

 :

StateeExpressionM

ValueStateExpressionM 

Binary a is e if      terme    M                    

terme    M                    

opeyApplyBinar

Variable a is e if                                             e

Value a is e if                                                   e

)),2.(

),,1.(

,.(

)(













Use our definition of ApplyBinary to expressions:

Recall: op, term1, term2, defined by the Abstract Syntax

term1,term2 can be any expression, not just binary
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Arithmetic Example

• Compute the meaning of x+2*y

• Current state σ={<x,2>,<y,-3>,<z,75>}

• Want to show: M(x+2*y,σ) = -4
– x+2*y is Binary

– From M(Expression e, State σ) this is
ApplyBinary(e.op, M(e.term1, σ), M(e.term2,σ))

= ApplyBinary(+,M(x,σ),M(2*y,σ))

= ApplyBinary(+,2,M(2*y,σ))

M(2*y,σ) is also Binary, which expands to:

ApplyBinary(*,M(2,σ), M(y,σ))

= ApplyBinary(*,2,-3) = -6

Back up: ApplyBinary(+,2,-6)  = -4

Java Implementation

Code close to the denotational semantic definition!

Value M(Expression e, State state) {

if (e instanceof Value)  return (Value)e;

if (e instanceof Variable)  return (Value)(state.get(e));

if (e instanceof Binary) { 

Binary b = (Binary)e;

return applyBinary(b.op, M(b.term1, state),

M(b.term2, state);

}

...


