
Brute Force Algorithms 
CS 351, Chapter 3 
 
For most of the algorithms portion of the class we’ll focus on specific design strategies to 
solve problems.  One of the simplest is brute force, which can be defined as: 
 

Brute force is a straightforward approach to solving a problem, usually 
directly based on the problem’s statement and definitions of the concepts 
involved.  Generally it involved iterating through all possible solutions 
until a valid one is found. 

 
Although it may sound unintelligent, in many cases brute force is the best way to go, as we 
can rely on the computer’s speed to solve the problem for us.   Brute force algorithms also 
present a nice baseline for us to compare our more complex algorithms to. 
 
As a simple example, consider searching through a sorted list of items for some target.  
Brute force would simply start at the first item, see if it is the target, and if not sequentially 
move to the next until we either find the target or hit the end of the list. For small lists this 
is no problem (and would actually be the preferred solution), but for extremely large lists 
we could use more efficient techniques.   
 
Skipping from text:  Selection Sort (already covered), Bubble Sort 
 
Brute Force String Matching 
 
The string matching problem is to find if a pattern P[1..m] occurs within text T[1..n].  Later 
on we will examine how to compute approximate string matching using dynamic 
programming.  In this case we will examine how to perform exact string matching, and 
later we will see more efficient methods than the brute force approach.   Note that string 
matching is useful in more cases than just searching for words in text.  String matching also 
applies to other problems, for example, matching DNA patterns in the human genome. 
 
Find all valid shifts of P in T using a loop: 
 
 Brute-Force-Match(T,P) // T = length 1-n      P = length 1-m 
  n ← length[T] 
  m ← length[P] 
  for s ← 0 to n-m 
   do if P[1..m]=T[s+1,s+m]  then P matches T at index s+1 
Example: 
 
T = ILOVEALGORITHMS 
P =             ALGOR 
 
 O(n+m) in this case, not much duplication of P in T 
 



T = AAAAAAAAAAAAAA 
P = AAAAAB 
     AAAAAB 
   etc. 
 
 O(mn) in this case, for each of the n characters we have to go through all m chars of 

P 
   
The brute force or naïve string matcher is slow in some cases, although in many cases it 
actually works pretty good and should not be ignored, especially since it is easy to 
implement.  For small n or cases when the text and pattern differ, this is one of the best 
methods to use. 
 
Closest-Pair and Convex-Hull Problems 
 
In computational geometry, two well-known problems are to find the closest pair of points 
and the convex hull of a set of points. 
 
The closest-pair problem, in 2D space, is to find the closest pair of points given a set of n 
points.  Given a list P of n points, P1=(x1,y1), … Pn=(xn,yn) we simply do the following: 
 
 BruteForceClosest(P) 
  min ←  ∞ 
  for i = 1 to n-1 
   for j = i+1 to n do 
    d ←  distance(Pi,Pj)   // Use sqrt(distances squared) 
    if d < min then    
     min ←  d 
     minPoints = (Pi,Pj) 
 
The basic operation is computing the Euclidean distance between all pairs of points and 
requires O(n2) runtime.   We could arrive at this value more formally by noting: 
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This requires computing the square root of the sum of squares of the difference between the 
coordinates in the point.  For a large number of points, computing the square root is a very 
expensive operation and can take a long time to run. 
 
In fact, we don’t even need to compute the square root – we can simply ignore the square 
root and compare the values (xi – xj)2 + (yi – yj)2 themselves, since this value is strictly 
increasing compared to the square root of the value.   This results in the same runtime, but 
would significantly increase the execution speed. 
 
 



The Convex Hull Problem   
 
In this problem, we want to compute the convex hull of a set of points?   What does this 
mean? 
 

• Formally: It is the smallest convex set containing the points.  A convex set is one in 
which if we connect any two points in the set, the line segment connecting these 
points must also be in the set. 

• Informally: It is a rubber band wrapped around the "outside" points.    
 
Here is a picture from: 
http://www.cs.princeton.edu/~ah/alg_anim/version1/ConvexHull.html 
It is an applet so you can play with it to see what a convex hull is if you like. 
 

 
 
Theorem:  The convex hull of any set S of n>2 points (not all collinear) is a convex 
polygon with the vertices at some of the points of S. 
 
How could you write a brute-force algorithm to find the convex hull? 
 
In addition to the theorem, also note that a line segment connecting two points P1 and P2 is 
a part of the convex hull’s boundary if and only if all the other points in the set lie on the 
same side of the line drawn through these points.  With a little geometry: 
 
 
   
 
 
 
 
 
 
 
 
For all points above the line, ax + by > c, while for all points below the line, ax + by < c.   
Using these formulas, we can determine if two points are on the boundary to the convex 
hull. 

(x1,y1)

(x2,y2)

Line defined by a=(y2-y1),  b=(x1-x2),
c=(x1y2 – x2y1)



High level pseudocode for the algorithm then becomes: 
 
 for each point Pi 
  for each point Pj where Pj ≠ Pi 
   Compute the line segment for Pi and Pj 
   for every other point Pk where Pk ≠ Pi and Pk ≠ Pj  
    If each Pk is on one side of the line segment, label Pi and Pj 
    in the convex hull 
 
What is the runtime for this algorithm? 
We will see much faster ones later. 
 
Exhaustive Search 
 
Exhaustive search refers to brute force search for combinatorial problems.  We essentially 
generate each element of the problem domain and see if it satisfies the solution. 
 
We do the following: 
 

• Construct a way of listing all potential solutions to the problem in a systematic 
manner 

o all solutions are eventually listed 
o no solution is repeated 

• Evaluate solutions one by one, perhaps disqualifying infeasible ones and keeping 
track of the best one found so far 

• When search ends, announce the winner 
 
Previously seen examples from our discussion of P/NP/NP Complete:  
 

Traveling Salesman Problem 
 

Find shortest Hamiltonian circuit in a weighted connected graph. 
 

 
 
Tour                                                         Cost                           .                           
a�b�c�d�a                         2+3+7+5 = 17 



a�b�d�c�a                         2+4+7+8 = 21 
a�c�b�d�a                         8+3+4+5 = 20 
a�c�d�b�a                         8+7+4+2 = 21 
a�d�b�c�a                         5+4+3+8 = 20 
a�d�c�b�a                         5+7+3+2 = 17 
 
Efficiency? 

 
Knapsack Problem 
 

Given n items: 
weights:  w1 w2 …   wn 

values:    v1   v2 …   vn 

A knapsack of capacity W  
Find the most valuable subset of the items that fit into the knapsack (sum of 
weights � W) 
 
Example: 
item      weight      value              Knapsack capacity W=16 
1 2              $20 
2 5              $30 
3 10            $50 
4 5              $10 
 
Subset      Total weight     Total value 
         {1}               2                  $20 
         {2}               5                  $30 
         {3}             10                  $50 
         {4}               5                  $10 
      {1,2}               7                  $50 
      {1,3}             12                  $70 
      {1,4}              7                   $30 
      {2,3}             15                  $80 
      {2,4}             10                  $40 
      {3,4}             15                  $60 
   {1,2,3}             17                  not feasible 
   {1,2,4}             12                  $60 
   {1,3,4}             17                  not feasible 
   {2,3,4}             20                  not feasible 
{1,2,3,4}             22                  not feasible 
 
Efficiency?   Later we’ll see a dynamic programming solution. 



Exhaustive search algorithms run in a realistic amount of time only on very small instances. 
 
In many cases there are much better alternatives!   In general though we end up with an 
approximation to the optimal solution instead of the guaranteed optimal solution. 

Euler circuits 
shortest paths 
minimum spanning tree 
various AI techniques 

 
In some cases exhaustive search (or variation) is the only known solution. 
 
 
Brute Force strengths and weaknesses: 
 

Strengths: 
• wide applicability 
• simplicity 
• yields reasonable algorithms for some important problems 

– searching  
– string matching 
– matrix multiplication 

• yields standard algorithms for simple computational tasks 
– sum/product of n numbers 
– finding max/min in a list 

Weaknesses: 
• rarely yields efficient algorithms 
• some brute force algorithms unacceptably slow 
• not as constructive/creative as some other design techniques 

 


