

Theorem

- Any context free language may be generated by a context free grammar in Chomsky Normal Form
- To show how this is possible we must be able to convert any CFG into CNF
 - 1. Eliminate all ε rules of the form $A \rightarrow \varepsilon$
 - 2. Eliminate all unit rules of the form $A \rightarrow B$
 - 3. Convert any remaining rules into the form $A \rightarrow BC$

Example

Next remove the epsilon transition from rule B S₀ → S S→ASA | aB | a A→B|S|ε B→b
We must repeat this for rule A: S₀ → S S→ASA | aB | a |AS | SA | S A→B|S B→b

Yield of a CNF Parse Tree

- Yield of a CNF parse tree is $|w| \le 2^{n-1}$
- Base Case: n = 1
 - If the longest path is of length 1, we must be using the rule $A \rightarrow t$ so |w| is 1 and $2^{1-1} = 1$
- Induction
 - Longest path has length n, where n>1. The root uses a production that must be of the form A→BC since we can't have a terminal from the root
 - By induction, the subtrees from B and C have yields of length at most 2^{n-2} since we used one of the edges from the root to these subtrees
 - The yield of the entire tree is the concatenation of these two yields, which is $2^{n-2} + 2^{n-2}$ which equals $2*2^{n-2} = 2^{n-2+1}=2^{n-1}$

The Pumping Lemma for CFL's

- Let L be a CFL. Then there exists a constant *p* such that if z is any string in L where |z| ≥ p, then we can write z = uvwxy subject to the following conditions:
 - 1. $|vwx| \le p$. This says the middle portion is not larger than p.
 - 2. $vx \neq \varepsilon$. We'll pump v and x. One may be empty, but both may not be empty.
 - 3. For all $i \ge 0$, $uv^i wx^i y$ is also in L. That is, we pump both v and x.

Why does the Pumping Lemma Hold?

- Given any context free grammar G, we can convert it to CNF. The parse tree creates a binary tree.
- Let G have *m* variables. Choose this as the value for the longest path in the tree.
 - The constant p can then be selected where $p = 2^{m}$.
 - Suppose a string z = uvwxy where $|z| \ge p$ is in L(G)
 - We showed previously that a string in L of length m or less must have a yield of 2^{m-1} or less.
 - Since $p = 2^m$, then 2^{m-1} is equal to p/2.
 - This means that z is too long to be yielded from a parse tree of length m.
 - What about a parse tree of length m+1?
 - Choose longest path to be m+1, yield must then be 2^m or less
 - Given $p=2^m$ and $|z| \le p$ this works out
 - Any parse tree that yields z must have a path of length at least m+1. This is illustrated in the following figure:

Pumping Lemma

- We have now shown all conditions of the pumping lemma for context free languages
- To show a language is not context free we
 - Pick a language L to show that it is not a CFL
 - Then some *p* must exist, indicating the maximum yield and length of the parse tree
 - We pick the string z, and may use p as a parameter
 - Break z into uvwxy subject to the pumping lemma constraints • |vwx| ≤ p, |vx| ≠ ε
 - We win by picking i and showing that uvⁱwxⁱy is not in L, therefore L is not context free

