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The Pumping Lemma for Context 
Free Grammars

Chomsky Normal Form

• Chomsky Normal Form (CNF) is a simple and 
useful form of a CFG

• Every rule of a CNF grammar is in the form
A�BC
A�a

• Where “a” is any terminal and A,B,C are any 
variables except B and C may not be the start 
variable
– There are two and only two variables on the right hand 

side of the rule
– Exception: S�ε is permitted where S is the start variable
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Theorem

• Any context free language may be generated by a 
context free grammar in Chomsky Normal Form

• To show how this is possible we must be able to 
convert any CFG into CNF

1. Eliminate all ε rules of the form A�ε
2. Eliminate all unit rules of the form A�B
3. Convert any remaining rules into the form A�BC

Proof

• First add a new start symbols S0 and the rule S0�S  where 
S was the original start symbol
– This guarantees the new start symbol is not on the RHS of any rule

• Remove all ε rules.
– Remove a rule A�ε where A is not the start symbol.  For each 

occurrence of A on the RHS of a rule, add a new rule with that 
occurrence of A deleted

– Ex:
R�uAv becomes  R�uv

– This must be done for each occurrence of A, e.g.:
R�uAvAw becomes R�uvAw | uAvw | uvw

Repeat until all ε rules are removed, not including the start
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Proof

• Next remove all unit rules of the form A�B
– Whenever a rule B�u appears, add the rule A�u. 
– u may be a string of variables and terminals
– Repeat until all unit rules are eliminated

• Convert all remaining rules into the form with two 
variables on the right
– The rule A�u1u2u3…uk becomes
– A�u1A1 A1�u2A2 … Ak-2�uk-1uk

– Where the Ai’s are new variables.   u may be a variable or a 
terminal (and in fact a terminal must be converted to a variable
since CNF does not allow a mixture of variables and terminals on
the right hand side)

Example

• Convert the following grammar into CNF
S�ASA | aB
A�B|S
B�b|ε

First add a new start symbol S0:
S0� S
S�ASA | aB
A�B|S
B�b|ε
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Example

• Next remove the epsilon transition from rule B
S0� S
S�ASA | aB | a
A�B|S|ε
B�b

• We must repeat this for rule A:
S0� S
S�ASA | aB | a |AS | SA | S
A�B|S
B�b

Example
• Next remove unit rules, starting with S0�S and S�S can also be removed

S0� ASA | aB | a | AS | SA
S�ASA | aB | a |AS | SA
A�B|S
B�b

• Next remove the rule for A�B
S0� ASA | aB | a | AS | SA
S�ASA | aB | a |AS | SA
A�b|S
B�b

• Next remove the rule for A�S
S0� ASA | aB | a | AS | SA
S�ASA | aB | a |AS | SA
A�b| ASA | aB | a |AS | SA
B�b
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Example
• Finally convert the remaining rules to the proper form by adding variables 

and rules when we have more than three things on the RHS
S0� ASA | aB | a | AS | SA
S�ASA | aB | a |AS | SA
A�b| ASA | aB | a |AS | SA
B�b

• Becomes
S0� AA1 | A2B | a | AS | SA
A1�SA
A2�a
S�AA1 | A2B | a |AS | SA
A�b| AA1 | A2B | a |AS | SA
B�b

We are done!

CNF and Parse Trees

• Chomsky Normal Form is useful to 
interpret a grammar as a parse tree
– CNF forms a binary tree!
– Consider the string babaaa on the previous 

grammar
S0 � AS � bS � bAS � bASS � baSS � baASS
� babSS � babSAS � babaAS � babaaS �

babaaa
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Grammar as a Parse Tree

S0

A S

b A S

a S

A S

b S A

a a

a

Why is this useful?

• Because we know lots of things about binary trees
• We can now apply these things to context-free 

grammars since any CFG can be placed into the 
CNF format

• For example
– If yield of the tree is a terminal string w
– If n is the height of the longest path in the tree
– Then |w| ≤ 2n-1

– How is this so?  (Next slide)
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Yield of a CNF Parse Tree

• Yield of a CNF parse tree is |w| ≤ 2n-1

• Base Case: n = 1
– If the longest path is of length 1, we must be using the rule A�t

so |w| is 1 and 21-1= 1
• Induction

– Longest path has length n, where n>1.   The root uses a production 
that must be of the form A�BC since we can’t have a terminal 
from the root

– By induction, the subtrees from B and C have yields of length at 
most 2n-2 since we used one of the edges from the root to these 
subtrees

– The yield of the entire tree is the concatenation of these two yields, 
which is 2n-2 + 2n-2 which equals 2*2n-2 = 2n-2+1=2n-1

The Pumping Lemma for CFL’s

• The result from the previous slide (|w| ≤ 2n-1) lets us define 
the pumping lemma for CFL’s

• The pumping lemma gives us a technique to show that 
certain languages are not context free
– Just like we used the pumping lemma to show certain languages 

are not regular
– But the pumping lemma for CFL’s is a bit more complicated than 

the pumping lemma for regular languages
• Informally

– The pumping lemma for CFL’s states that for sufficiently long 
strings in a CFL, we can find two, short, nearby substrings that we 
can “pump” in tandem and the resulting string must also be in the 
language.
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The Pumping Lemma for CFL’s

• Let L be a CFL.  Then there exists a constant p
such that if z is any string in L where |z| ≥ p, then 
we can write z = uvwxy subject to the following 
conditions:

1. |vwx| ≤ p.   This says the middle portion is not larger 
than p.

2. vx ≠ �.  We’ll pump v and x.  One may be empty, but 
both may not be empty.

3. For all i ≥ 0, uviwxiy is also in L.   That is, we pump 
both v and x.

Why does the Pumping Lemma 
Hold?

• Given any context free grammar G, we can convert it to CNF.  The
parse tree creates a binary tree.

• Let G have m variables.  Choose this as the value for the longest path 
in the tree. 
– The constant p can then be selected where p = 2m.  
– Suppose a string z = uvwxy where |z| ≥ p is in L(G)

• We showed previously that a string in L of length m or less must have a yield 
of 2m-1 or less.   

• Since p = 2m,  then 2m-1 is equal to p/2.   
• This means that z is too long to be yielded from a parse tree of length m. 

– What about a parse tree of length m+1?
• Choose longest path to be m+1,  yield must then be 2m or less
• Given p=2m and |z| ≤ p this works out
• Any parse tree that yields z must have a path of length at least m+1.  This is 

illustrated in the following figure:
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Parse Tree

• z=uvwxy where |z| ≥ p

• Variables A0,A1, … Ak

• If k≥m then at least two of these variables must be 
the same, since only m unique variables

A0

A1

A2

…

Ak

Parse Tree

• Suppose the variables are the same at Ai=Aj
where k-m ≤ i < j ≤ k

A0

Ai

Aj

u     v          w             x            y

Ai=Aj although we may 
follow different 
production rules for each
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Pumping Lemma

• Condition 2:  vx � ε
• Follows since we must use a 

production from Ai to Aj and 
can’t be a terminal or there would 
be no Aj.  

• Therefore we must have two 
variables; one of these must lead 
to Aj and the other must lead to v 
or x or both. 

• This means v and x cannot both 
be empty but one might be 
empty.

A0

Ai

Aj

u     v          w             x            y

Pumping Lemma

• Condition 1 stated that 
|vwx| ≤ p

• This says the yield of the 
subtree rooted at Ai is ≤ p

• We picked the tree so the 
longest path was m+1, so it 
easily follows that
|vwx| ≤ p ≤ 2m+1-1

(Ai could be A0 so vwx is the 
entire tree)

A0

Ai

Aj

u     v          w             x            y
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Pumping Lemma

• Condition 3 stated that for 
all i ≥ 0, uviwxiy is also in 
L

• We can show this by 
noting that the symbol 
Ai=Aj

• This means we can 
substitute different 
production rules for each 
other

• Substituting Aj for Ai the 
resulting string must be in 
L

A0

Ai

Aj

u     v          w             x            y

A0

Aj

u    y

w

Pumping Lemma

• Substituting Ai
for Aj

• Result:
• uv1wx1y, 

uv2wx2y, etc.

A0

Ai

Aj

u     v          w             x            y

A0

Ai

Ai

u     v                        x            y

v            w             x

Aj
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Pumping Lemma

• We have now shown all conditions of the pumping lemma 
for context free languages

• To show a language is not context free we 
– Pick a language L to show that it is not a CFL
– Then some p must exist, indicating the maximum yield and length 

of the parse tree
– We pick the string z, and may use p as a parameter
– Break z into uvwxy subject to the pumping lemma constraints

• |vwx| ≤ p,  |vx| � ε
– We win by picking i and showing that uviwxiy is not in L, 

therefore L is not context free

Example 1
• Let L be the language { 0n1n2n | n ≥ 1 }.  Show that this language is not a CFL.
• Suppose that L is a CFL. Then some integer p exists and we pick z = 0p1p2p.
• Since z=uvwxy and |vwx| ≤ p, we know that the string vwx must consist of 

either:
– all zeros
– all ones
– all twos
– a combination of 0’s and 1’s 
– a combination of 1’s and 2’s

• The string vwx cannot contain 0’s, 1’s, and 2’s because the string is not large 
enough to span all three symbols.

• Now “pump down” where i=0.  This results in the string uwy and can no 
longer contain an equal number of 0’s, 1’s, and 2’s because the strings v and x 
contains at most two of these three symbols.   Therefore the result is not in L 
and therefore L is not a CFL.
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Example 2

• Let L be the language { aibjck | 0 ≤ i ≤ j ≤ k }.  Show that this language is 
not a CFL. This language is similar to the previous one, except proving that 
it is not context free requires the examination of more cases.  

• Suppose that L is a CFL.  
• Pick z = apbpcp as we did with the previous language.  
• As before, the string vwx cannot contain a’s, b’s, and c’s.  We then pump 

the string depending on the string vwx as follows:
– There are no a’s.   Then we try pumping down to obtain the string uv0wx0y to 

get uwy.  This contains the same number of a’s, but fewer b’c or c’s.  Therefore 
it is not in L.

– There are no b’s but there are a’s.  Then we pump up to obtain the string 
uv2wx2y to give us more a’s than b’s and this is not in L.

– There are no b’s but there are c’s.  Then we pump down to obtain the string 
uwy.  This string contains the same number of b’s but fewer c’s, therefore this 
is not in C.

– There are no c’s.  Then we pump up to obtain the string uv2wx2y to give us 
more b’s or more a’s than there are c’s, so this is not in C.

• Since we can come up with a contradiction for any case, this language is 
not a CFL language.

Example 3

• Let L be the language {ww | w ∈ {0,1}*}.  Show that this 
language is not a CFL.

• As before, assume that L is context-free and let p be the 
pumping length.  

• This time choosing the string z is less obvious. One 
possibility is the string:  0p10p1.  It is in L and has length 
greater than p, so it appears to be a good candidate.  

• But this string can be pumped as follows so it is not 
adequate for our purposes:

000…000 0   1   0   000…0001

0p1 0p1

u          v   w  x            y
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Example 3
• This time lets try z=0p1p0p1p instead.  We can show that this string 

cannot be pumped.  
• We know that |vwx| ≤ p.  

– Let’s say that the string |vwx| consists of the first p 0’s. If so, then if we 
pump this string to uv2wx2y then we’ll have introduced more 0’s in the first 
half and this is not in L.  

– We get a similar result if |vwx| consists of all 0’s or all 1’s in either the first 
or second half.

– If the string |vwx| matches some sequence of 0’s and 1’s in the first half of 
z, then if we pump this string to uv2wx2y then we will have introduced 
more 1’s on the left that move into the second half, so it cannot be of the 
form ww and be in L.  Similarly, if |vwx| occurs in the second half of z, 
them pumping z to uv2wx2y moves a 0 into the last position of the first half, 
so it cannot be of the form ww either.

– This only leaves the possibility that |vwx| somehow straddles the midpoint 
of z.   But if this is the case, we can now try pumping the string down.  
uv0wx0y  = uwy has the form of 0p1i0j1p where i and j cannot both equal p.  
This string is not of the form ww and therefore the string cannot be 
pumped and L is therefore not a CFL.


