Regular Expressions

Regular Expressions

- Notation to specify a language
 - Declarative
 - Sort of like a programming language.
 - Fundamental in some languages like perl and applications like grep or lex
 - Capable of describing the same thing as a NFA
 - The two are actually equivalent, so RE = NFA = DFA
 - We can define an algebra for regular expressions

Algebra for Languages

- Previously we discussed these operators:
 - Union
 - Concatenation
 - Kleene Star

Definition of a Regular Expression

- R is a regular expression if it is:
 - **1. a** for some *a* in the alphabet Σ , standing for the language {a}
 - 2. ϵ , standing for the language $\{\epsilon\}$
 - 3. Ø, standing for the empty language
 - 4. R_1+R_2 where R_1 and R_2 are regular expressions, and + signifies union (sometimes | is used)
 - 5. R_1R_2 where R_1 and R_2 are regular expressions and this signifies concatenation
 - 6. R* where R is a regular expression and signifies closure
 - 7. (R) where R is a regular expression, then a parenthesized R is also a regular expression

This definition may seem circular, but 1-3 form the basis Precedence: Parentheses have the highest precedence, followed by *, concatenation, and then union.

RE Examples

- $L(001) = \{001\}$
- $L(0+10^*) = \{ 0, 1, 10, 100, 1000, 10000, ... \}$
- $L(0*10*) = \{1, 01, 10, 010, 0010, ...\}$ i.e. $\{w \mid w \text{ has exactly a single } 1\}$
- $L(\Sigma\Sigma)^* = \{w \mid w \text{ is a string of even length}\}\$
- $L((0(0+1))^*) = \{ \epsilon, 00, 01, 0000, 0001, 0100, 0101, ... \}$
- $L((0+\epsilon)(1+\epsilon)) = \{\epsilon, 0, 1, 01\}$
- $L(1\emptyset) = \emptyset$; concatenating the empty set to any set yields the empty set.
- $R\varepsilon = R$
- $R+\emptyset = R$
- Note that $R+\varepsilon$ may or may not equal R (we are adding ε to the language)
- Note that RØ will only equal R if R itself is the empty set.

RE Exercise

Exercise: Write a regular expression for the set of strings that contains an even number of 1's over Σ={0,1}. Treat zero 1's as an even number.

Equivalence of FA and RE

- Finite Automata and Regular Expressions are equivalent. To show this:
 - Show we can express a DFA as an equivalent RE
 - Show we can express a RE as an ε -NFA. Since the ε -NFA can be converted to a DFA and the DFA to an NFA, then RE will be equivalent to all the automata we have described.

DFA to RE: State Elimination

- Eliminates states of the automaton and replaces the edges with regular expressions that includes the behavior of the eliminated states.
- Eventually we get down to the situation with just a start and final node, and this is easy to express as a RE

DFA to RE via State Elimination (1)

- 1. Starting with intermediate states and then moving to accepting states, apply the state elimination process to produce an equivalent automaton with regular expression labels on the edges.
 - The result will be a one or two state automaton with a start state and accepting state.

What have we shown?

- Regular expressions and finite state automata are really two different ways of expressing the same thing.
- In some cases you may find it easier to start with one and move to the other
 - E.g., the language of an even number of one's is typically easier to design as a NFA or DFA and then convert it to a RE

Algebra for RE's

- Commutative law for union: - L + M = M + L
- Associative law for union: -(L + M) + N = L + (M + N)
- Associative law for concatenation:
 (LM)N = L(MN)
- Note that there is no commutative law for concatenation, i.e. LM ≠ ML

Laws Involving Closure

- $(L^*)^* = L^*$
 - i.e. closing an already closed expression does not change the language
- $Ø^* = \varepsilon$
- $3 = *3 \bullet$
- $L^+ = LL^* = L^*L$

– more of a definition than a law

- $L^* = L^+ + \varepsilon$
- L? = ε + L
 - more of a definition than a law

Concretization Test

• For our example

 $(R + S)^* = (R^*S^*)^*$

We can substitute 0 for R and 1 for S.

The left side is clearly any sequence of 0's and 1's. The right side also denotes any string of 0's and 1's, since 0 and 1 are each in L(0*1*).

