
1

Regular Expressions

Regular Expressions

• Notation to specify a language
– Declarative
– Sort of like a programming language.

• Fundamental in some languages like perl and applications like
grep or lex

– Capable of describing the same thing as a NFA
• The two are actually equivalent, so RE = NFA = DFA

– We can define an algebra for regular expressions

2

Algebra for Languages

• Previously we discussed these operators:
– Union
– Concatenation
– Kleene Star

Definition of a Regular Expression

• R is a regular expression if it is:
1. a for some a in the alphabet �, standing for the language {a}
2. �, standing for the language {�}
3. Ø, standing for the empty language
4. R1+R2 where R1 and R2 are regular expressions, and + signifies

union (sometimes | is used)
5. R1R2 where R1 and R2 are regular expressions and this signifies

concatenation
6. R* where R is a regular expression and signifies closure
7. (R) where R is a regular expression, then a parenthesized R is

also a regular expression

This definition may seem circular, but 1-3 form the basis
Precedence: Parentheses have the highest precedence,
followed by *, concatenation, and then union.

3

RE Examples
• L(001) = {001}
• L(0+10*) = { 0, 1, 10, 100, 1000, 10000, … }
• L(0*10*) = {1, 01, 10, 010, 0010, …} i.e. {w | w has exactly a single 1}
• L(��������)* = {w | w is a string of even length}
• L((0(0+1))*) = { �, 00, 01, 0000, 0001, 0100, 0101, …}
• L((0+�)(1+ �)) = {�, 0, 1, 01}
• L(1Ø) = Ø ; concatenating the empty set to any set yields the empty set.
• R� = R
• R+Ø = R

• Note that R+� may or may not equal R (we are adding � to the language)
• Note that RØ will only equal R if R itself is the empty set.

RE Exercise

• Exercise: Write a regular expression for the
set of strings that contains an even number
of 1’s over �={0,1}. Treat zero 1’s as an
even number.

4

Equivalence of FA and RE

• Finite Automata and Regular Expressions
are equivalent. To show this:
– Show we can express a DFA as an equivalent

RE
– Show we can express a RE as an �-NFA. Since

the �-NFA can be converted to a DFA and the
DFA to an NFA, then RE will be equivalent to
all the automata we have described.

Turning a DFA into a RE

• Theorem: If L=L(A) for some DFA A, then there
is a regular expression R such that L=L(R).

• Proof
– Construct GNFA, Generalized NFA

• We’ll skip this in class, but see the textbook for details

– State Elimination
• We’ll see how to do this next, easier than inductive

construction, there is no exponential number of expressions

5

DFA to RE: State Elimination

• Eliminates states of the automaton and
replaces the edges with regular expressions
that includes the behavior of the eliminated
states.

• Eventually we get down to the situation
with just a start and final node, and this is
easy to express as a RE

State Elimination
• Consider the figure below, which shows a generic state s about to be eliminated.

The labels on all edges are regular expressions.
• To remove s, we must make labels from each qi to p1 up to pm that include the paths

we could have made through s.

q1

qk

s

p1

pm

.

.

.

.

.

.

R1m

R11

SQ1

QK

Rkm

Rk1

P1

Pm

q1

qk

p1

pm

.

.

.

R11+Q1S*P1

Rkm+QkS*Pm

.

.

.
Rk1+QkS*P1

R1m+Q1S*Pm

Note: q and p may be the same state!

6

DFA to RE via State Elimination (1)

1. Starting with intermediate states and then
moving to accepting states, apply the state
elimination process to produce an
equivalent automaton with regular
expression labels on the edges.

• The result will be a one or two state
automaton with a start state and accepting
state.

DFA to RE State Elimination (2)

2. If the two states are different, we will
have an automaton that looks like the
following:

Start
S

R

T

U

We can describe this automaton as: (R+SU*T)*SU*

7

DFA to RE State Elimination (3)

3. If the start state is also an accepting state, then we
must also perform a state elimination from the
original automaton that gets rid of every state but
the start state. This leaves the following:

Start

R

We can describe this automaton as simply R*.

DFA to RE State Elimination (4)

4. If there are n accepting states, we must
repeat the above steps for each accepting
states to get n different regular
expressions, R1, R2, … Rn. For each
repeat we turn any other accepting state to
non-accepting. The desired regular
expression for the automaton is then the
union of each of the n regular expressions:
R1∪ R2… ∪ RN

8

DFA�RE Example

• Convert the following
to a RE

• First convert the edges
to RE’s:

3Start 1 2
1 1

0

0

0,1

3Start 1 2
1 1

0

0

0+1

DFA � RE Example (2)

• Eliminate State 1:

• To:

3Start 1 2
1 1

0

0

0+1

3Start 2
11

0+10 0+1
Note edge from 3�3

Answer: (0+10)*11(0+1)*

9

Second Example

• Automata that accepts even number of 1’s

• Eliminate state 2:

1Start 2 3
1 1

0

1

00

1Start 3

0 0+10*1

10*1

Second Example (2)

• Two accepting states, turn off state 3 first

1Start 3

0 0+10*1

10*1

1Start

0

This is just 0*; can ignore going to state 3 since we would “die”

3

0+10*1

10*1

10

Second Example (3)

• Turn off state 1 second:

1Start 3

0 0+10*1

10*1

This is just 0*10*1(0+10*1)*

Combine from previous slide to get
0* + 0*10*1(0+10*1)*

1Start 3

0 0+10*1

10*1

Converting a RE to an Automata

• We have shown we can convert an automata to a
RE. To show equivalence we must also go the
other direction, convert a RE to an automaton.

• We can do this easiest by converting a RE to an �-
NFA
– Inductive construction
– Start with a simple basis, use that to build more

complex parts of the NFA

11

RE to �-NFA

• Basis:

R=a

R=�

a

�

R=Ø

Next slide: More complex RE’s

R=S+T
S

T

�

�

�

�

R=ST S T
�

R=S* S
�

�

�

�

12

RE to �-NFA Example

• Convert R= (ab+a)* to an NFA
– We proceed in stages, starting from simple

elements and working our way up

a
a

b
b

ab
a b�

RE to �-NFA Example (2)

ab+a
a b�

a

�

�

�

�

(ab+a)* a b�

a

�

�

�

�

��

�

�

13

What have we shown?

• Regular expressions and finite state
automata are really two different ways of
expressing the same thing.

• In some cases you may find it easier to start
with one and move to the other
– E.g., the language of an even number of one’s

is typically easier to design as a NFA or DFA
and then convert it to a RE

Algebraic Laws for RE’s

• Just like we have an algebra for arithmetic,
we also have an algebra for regular
expressions.
– While there are some similarities to arithmetic

algebra, it is a bit different with regular
expressions.

14

Algebra for RE’s

• Commutative law for union:
– L + M = M + L

• Associative law for union:
– (L + M) + N = L + (M + N)

• Associative law for concatenation:
– (LM)N = L(MN)

• Note that there is no commutative law for
concatenation, i.e. LM ≠ ML

Algebra for RE’s (2)

• The identity for union is:
– L + Ø = Ø + L = L

• The identity for concatenation is:
– L� = �L = L

• The annihilator for concatenation is:
– ØL = LØ = Ø

• Left distributive law:
– L(M + N) = LM + LN

• Right distributive law:
– (M + N)L = LM + LN

• Idempotent law:
– L + L = L

15

Laws Involving Closure

• (L*)* = L*
– i.e. closing an already closed expression does not

change the language
• Ø* = �
• �* = �
• L+ = LL* = L*L

– more of a definition than a law
• L* = L+ + �
• L? = � + L

– more of a definition than a law

Checking a Law

• Suppose we are told that the law
(R + S)* = (R*S*)*

holds for regular expressions. How would we check that this
claim is true?

1. Convert the RE’s to DFA’s and minimize the DFA’s to see
if they are equivalent (we’ll cover minimization later)

2. We can use the “concretization” test:
– Think of R and S as if they were single symbols, rather than

placeholders for languages, i.e., R = {0} and S = {1}.
– Test whether the law holds under the concrete symbols. If so, then

this is a true law, and if not then the law is false.

16

Concretization Test

• For our example
(R + S)* = (R*S*)*

We can substitute 0 for R and 1 for S.
The left side is clearly any sequence of 0's
and 1's. The right side also denotes any
string of 0's and 1's, since 0 and 1 are each
in L(0*1*).

Concretization Test

• NOTE: extensions of the test beyond regular expressions
may fail.

• Consider the “law” L ∩ M ∩ N = L ∩ M.
• This is clearly false

– Let L=M={a} and N=Ø. {a} ≠ Ø.
– But if L={a} and M = {b} and N={c} then
– L∩M does equal L ∩ M ∩ N which is empty.
– The test would say this law is true, but it is not because we are

applying the test beyond regular expressions.

• We’ll see soon various languages that do not have
corresponding regular expressions.

