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Regular Expressions

Regular Expressions

• Notation to specify a language
– Declarative
– Sort of like a programming language.  

• Fundamental in some languages like perl and applications like 
grep or lex

– Capable of describing the same thing as a NFA
• The two are actually equivalent, so RE = NFA = DFA

– We can define an algebra for regular expressions 
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Algebra for Languages

• Previously we discussed these operators:
– Union
– Concatenation
– Kleene Star

Definition of a Regular Expression

• R is a regular expression if it is:
1. a for some a in the alphabet �, standing for the language {a}
2. �, standing for the language {�}
3. Ø, standing for the empty language
4. R1+R2 where R1 and R2 are regular expressions, and + signifies 

union  (sometimes | is used)
5. R1R2 where R1 and R2 are regular expressions and this signifies 

concatenation
6. R* where R is a regular expression and signifies closure
7. (R) where R is a regular expression, then a parenthesized R is 

also a regular expression

This definition may seem circular, but 1-3 form the basis
Precedence: Parentheses have the highest precedence, 
followed by *, concatenation, and then union.
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RE Examples
• L(001) = {001} 
• L(0+10*) = { 0, 1, 10, 100, 1000, 10000, … }
• L(0*10*) = {1, 01, 10, 010, 0010, …}    i.e. {w | w has exactly a single 1}
• L(��������)* = {w | w is a string of even length}
• L((0(0+1))*) = { �, 00, 01, 0000, 0001, 0100, 0101, …}
• L((0+�)(1+ �)) = {�, 0, 1, 01}
• L(1Ø)  = Ø ;  concatenating the empty set to any set yields the empty set.
• R� = R
• R+Ø = R

• Note that R+� may or may not equal R (we are adding � to the language)
• Note that RØ will only equal R if R itself is the empty set.

RE Exercise

• Exercise:  Write a regular expression for the 
set of strings that contains an even number 
of 1’s over �={0,1}.  Treat zero 1’s as an 
even number.
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Equivalence of FA and RE

• Finite Automata and Regular Expressions 
are equivalent.  To show this:
– Show we can express a DFA as an equivalent 

RE
– Show we can express a RE as an �-NFA.  Since 

the �-NFA can be converted to a DFA and the 
DFA to an NFA, then RE will be equivalent to 
all the automata we have described.

Turning a DFA into a RE

• Theorem:  If L=L(A) for some DFA A, then there 
is a regular expression R such that L=L(R).

• Proof
– Construct GNFA, Generalized NFA

• We’ll skip this in class, but see the textbook for details 

– State Elimination
• We’ll see how to do this next, easier than inductive 

construction, there is no exponential number of expressions
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DFA to RE: State Elimination

• Eliminates states of the automaton and 
replaces the edges with regular expressions 
that includes the behavior of the eliminated 
states.  

• Eventually we get down to the situation 
with just a start and final node, and this is 
easy to express as a RE

State Elimination
• Consider the figure below, which shows a generic state s about to be eliminated.  

The labels on all edges are regular expressions.
• To remove s, we must make labels from each qi to p1 up to pm that include the paths 

we could have made through s. 
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Note: q and p may be the same state!
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DFA to RE via State Elimination (1)

1. Starting with intermediate states and then 
moving to accepting states, apply the state 
elimination process to produce an 
equivalent automaton with regular 
expression labels on the edges.   

• The result will be a one or two state 
automaton with a start state and accepting 
state.

DFA to RE State Elimination (2)

2. If the two states are different, we will 
have an automaton that looks like the 
following:

 

Start
S

R

T

U

We can describe this automaton as:  (R+SU*T)*SU*
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DFA to RE State Elimination (3)

3. If the start state is also an accepting state, then we 
must also perform a state elimination from the 
original automaton that gets rid of every state but 
the start state.  This leaves the following:

Start

R

We can describe this automaton as simply R*.

DFA to RE State Elimination (4)

4. If there are n accepting states, we must 
repeat the above steps for each accepting 
states to get n different regular 
expressions, R1, R2, … Rn.  For each 
repeat we turn any other accepting state to 
non-accepting.  The desired regular 
expression for the automaton is then the 
union of each of the n regular expressions:  
R1∪ R2… ∪ RN
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DFA�RE Example

• Convert the following 
to a RE

• First convert the edges 
to RE’s:

3Start 1 2
1 1

0

0

0,1

3Start 1 2
1 1

0

0

0+1

DFA � RE Example (2)

• Eliminate State 1:

• To:

3Start 1 2
1 1

0

0

0+1

3Start 2
11

0+10 0+1
Note edge from 3�3

Answer:  (0+10)*11(0+1)*
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Second Example

• Automata that accepts even number of 1’s

• Eliminate state 2:

1Start 2 3
1 1

0

1

00

1Start 3

0 0+10*1

10*1

Second Example (2)

• Two accepting states, turn off state 3 first

1Start 3

0 0+10*1

10*1

1Start

0

This is just 0*;  can ignore going to state 3 since we would “die”

3

0+10*1

10*1
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Second Example (3)

• Turn off state 1 second:

1Start 3

0 0+10*1

10*1

This is just 0*10*1(0+10*1)*

Combine from previous slide to get 
0* + 0*10*1(0+10*1)*

1Start 3

0 0+10*1

10*1

Converting a RE to an Automata

• We have shown we can convert an automata to a 
RE.  To show equivalence we must also go the 
other direction, convert a RE to an automaton.

• We can do this easiest by converting a RE to an �-
NFA
– Inductive construction
– Start with a simple basis, use that to build more 

complex parts of the NFA
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RE to �-NFA

• Basis:

R=a

R=�

a

�

R=Ø

Next slide: More complex RE’s

R=S+T
S

T

�

�

�

�

R=ST S T
�

R=S* S
�

�

�

�
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RE to �-NFA Example

• Convert R= (ab+a)* to an NFA
– We proceed in stages, starting from simple 

elements and working our way up 

a
a

b
b

ab
a b�

RE to �-NFA Example (2)

ab+a
a b�

a

�

�

�

�

(ab+a)* a b�

a

�

�

�

�

��

�

�
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What have we shown?

• Regular expressions and finite state 
automata are really two different ways of 
expressing the same thing.  

• In some cases you may find it easier to start 
with one and move to the other
– E.g., the language of an even number of one’s 

is typically easier to design as a NFA or DFA 
and then convert it to a RE

Algebraic Laws for RE’s

• Just like we have an algebra for arithmetic, 
we also have an algebra for regular 
expressions.  
– While there are some similarities to arithmetic 

algebra, it is a bit different with regular 
expressions.
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Algebra for RE’s

• Commutative law for union:
– L + M = M + L

• Associative law for union:
– (L + M) + N = L + (M + N)

• Associative law for concatenation:
– (LM)N = L(MN)

• Note that there is no commutative law for 
concatenation, i.e. LM ≠ ML

Algebra for RE’s (2)

• The identity for union is:
– L + Ø = Ø + L = L

• The identity for concatenation is: 
– L� = �L = L

• The annihilator for concatenation is:
– ØL = LØ = Ø

• Left distributive law:
– L(M + N) = LM + LN

• Right distributive law:
– (M + N)L = LM + LN

• Idempotent law:
– L + L = L
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Laws Involving Closure

• (L*)* =  L*
– i.e. closing an already closed expression does not 

change the language
• Ø* = �
• �* = �
• L+ = LL*  = L*L

– more of a definition than a law
• L* = L+ + �
• L? = � + L

– more of a definition than a law

Checking a Law

• Suppose we are told that the law 
(R + S)* = (R*S*)* 

holds for regular expressions. How would we check that this 
claim is true?

1.  Convert the RE’s to DFA’s and minimize the DFA’s to see 
if they are equivalent (we’ll cover minimization later)

2.  We can use the “concretization” test:
– Think of R and S as if they were single symbols, rather than 

placeholders for languages, i.e., R = {0} and S = {1}.
– Test whether the law holds under the concrete symbols.  If so, then 

this is a true law, and if not then the law is false.  
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Concretization Test

• For our example
(R + S)* = (R*S*)* 

We can substitute 0 for R and 1 for S.
The left side is clearly any sequence of 0's 
and 1's.  The right side also denotes any 
string of 0's and 1's, since 0 and 1 are each 
in L(0*1*). 

Concretization Test

• NOTE: extensions of the test beyond regular expressions 
may fail.  

• Consider the “law” L ∩ M ∩ N = L ∩ M.
• This is clearly false

– Let L=M={a} and N=Ø.  {a} ≠ Ø.
– But if L={a} and M = {b} and N={c} then 
– L∩M does equal L ∩ M ∩ N which is empty.  
– The test would say this law is true, but it is not because we are 

applying the test beyond regular expressions.

• We’ll see soon various languages that do not have 
corresponding regular expressions.


