
4/13/2010

1

String Matching

String Matching

• Problem is to find if a pattern P[1..m] occurs
within text T[1..n]

• Simple solution: Naïve String Matching
– Match each position in the pattern to each position in

the text
• T = AAAAAAAAAAAAAA

• P = AAAAAB

AAAAAB

etc.

– O(mn)

4/13/2010

2

String Matching Automaton

• Create a DFA to match the string, just like
we did in the automata portion of the class

• Example for string “aab” with ∑ = {a,b}:

• Runs in O(n) time but requires O(m|∑|)
time to construct the DFA, where ∑ is the
alphabet

30

b
a

b

a

12
ab

b

a

Rabin Karp

• Idea: Before spending a lot of time
comparing chars for a match, do some
pre-processing to eliminate locations that
could not possibly match

• If we could quickly eliminate most of the
positions then we can run the naïve
algorithm on whats left

• Eliminate enough to hopefully get O(n)
runtime overall

4/13/2010

3

Rabin Karp Idea

• To get a feel for the idea say that our text and

pattern is a sequence of bits.

– For example,
• P=010111

• T=0010110101001010011

– The parity of a binary value is to count the number of

one’s. If odd, the parity is 1. If even, the parity is 0.

Since our pattern is six bits long, let’s compute the

parity for each position in T, counting six bits ahead.

Call this f[i] where f[i] is the parity of the string

T[i..i+5].

Parity

T=0010110101001010011

P=010111

Since the parity of our pattern is 0, we only need to check positions 2, 4, 6,

8, 10, and 11 in the text

4/13/2010

4

Rabin Karp

• On average we expect the parity check to reject
half the inputs.

• To get a better speed-up, by a factor of q, we
need a fingerprint function that maps m-bit
strings to q different fingerprint values.

• Rabin and Karp proposed to use a hash function
that considers the next m bits in the text as the
binary expansion of an unsigned integer and
then take the remainder after division by q.

• A good value of q is a prime number greater
than m.

Rabin Karp

• More precisely, if the m bits are s0s1s2 ..

sm-1 then we compute the fingerprint

value:

• For the previous example, f[i] =

qs
m

j

jm

j mod 2
1

0

1





















7 mod 2][
5

0

5




















j

jjit

For our pattern 010111, its hash value is 23 mod 7 or 2. This means that we would

only use the naïve algorithm for positions where f[i] = 2

4/13/2010

5

Rabin Karp Wrapup

• But we want to compare text, not bits!

– Text is represented using bits

– For a textual pattern and text, we simply
convert the pattern into a sequence of bits
that corresponds to its ASCII sequence, and
the same for the text.

• Skipping the details of the actual
implemention, we can compute f[i] in O(m)
time giving us the expected runtime of
O(m+n) given a good hashing.

KMP : Knuth Morris Pratt

• This is a famous linear-time running string

matching algorithm that achieves a

O(m+n) running time.

• Uses an auxiliary function pi[1..m]

precomputed from P in time O(m).

• We’ll give an overview of it here but not go

into details of how to implement it.

4/13/2010

6

Pi Function

• This function contains knowledge about

how the pattern matches shifts against

itself.

• If we know how the pattern matches

against itself, we can slide the pattern

more characters ahead than just one

character as in the naïve algorithm.

Pi Function Example

P: pappar

T: pappappapparrassanuaragh

Naive

P: pappar

T: pappappapparrassanuaragh

Smarter technique:

We can slide the pattern ahead so that the longest PREFIX of P that we have

already processed matches the longest SUFFIX of T that we have already

matched.

P: pappar

T: pappappapparrassanuaragh

4/13/2010

7

KMP Example

P: pappar

T: pappappapparrassanuaragh

The characters mismatch so we shift over one character for both the text and the

pattern:

P: pappar

T: pappappapparrassanuaragh

We continue in this fashion until we reach the end of the text.

P: pappar

T: pappappapparrassanuaragh

P: pappar

T: pappappapparrassanuaragh

KMP Example

4/13/2010

8

KMP

• More details in the book how to implement

KMP, skipping here.

– Build a special type of DFA

• Runtime

– O(m) to compute the Pi values

– O(n) to compare the pattern to the text

– Total O(n+m) runtime

Horspool’s Algorithm

• It is possible in some cases to search text

of length n in less than n comparisons!

• Horspool’s algorithm is a relatively simple

technique that achieves this distinction for

many (but not all) input patterns. The idea

is to perform the comparison from right to

left instead of left to right.

4/13/2010

9

Horspool’s Algorithm

• Consider searching:
T=BARBUGABOOTOOMOOBARBERONI

P=BARBER

• There are four cases to consider
1. There is no occurrence of the character in T in P. In

this case there is no use shifting over by one, since we’ll

eventually compare with this character in T that is not in

P. Consequently, we can shift the pattern all the way

over by the entire length of the pattern (m):

Horspool’s Algorithm

2.There is an occurrence of the character from T in

P. Horspool’s algorithm then shifts the pattern

so the rightmost occurrence of the character

from P lines up with the current character in T:

4/13/2010

10

Horspool’s Algorithm

We’ve done some matching until we hit a

character in T that is not in P. Then we look at

the last character in P and shift:

3. By the entire pattern if the rightmost character in P

does not appear again to the left

4. By an amount to line up the next to last character in P

(among the m-1 characters) to the last character, like

case 2

Horspool’s Algorithm

• More on case 4

4/13/2010

11

Horspool Implementation

• We first precompute the shifts and store

them in a table. The table will be indexed

by all possible characters that can appear

in a text. To compute the shift T(c) for

some character c we use the formula:

– T(c) = the pattern’s length m, if c is not

among the first m-1 characters of P, else the

distance from the rightmost occurrence of c in

P to the end of P

Pseudocode for Horspool

4/13/2010

12

Horspool Example

In running only make 12 comparisons, less than the length of the text! (24 chars)

Worst case scenario?

Boyer Moore

• Similar idea to Horspool’s algorithm in that

comparisons are made right to left, but is more

sophisticated in how to shift the pattern.

• Using the “bad symbol” heuristic, we jump to the

next rightmost character in P matching the char

in T:

4/13/2010

13

Boyer Moore Example

Also uses 12 comparisons.

However, the worst case is O(nm+|∑|): requires O(m+| ∑ |) to compute

the last-bad character, and we could run into same worst case as the

naïve brute force algorithm (consider P=aaaa, T=aaaaaaaa…).

