
1

Software Development Best

Practices

Part 2

Outsourcing

• Paying an outside organization to develop

a project or parts of a project instead of

developing it in-house

• Presumably the outsourcing organization

has more expertise in the particular

application area

• Can potentially save development cost

and time

2

Outsourcing Benefits

• Reuse
– Commercial outsourcing companies can achieve economies of

scale where an individual organization cannot

• Staffing flexibility
– Outsourcing organization might be able to devote more

developers

• Experience
– Presumably has more experience if the area is new to you

• Better requirements specification
– Forces careful requirements in order to craft contract than

otherwise may be developed

• Reduced feature creep
– Since paying for functions and need specific requirements,

feature creep can be controlled

Using Outsourcing

• Requires more skillful management
– Develop a management plan including risk
management
• How to select a vendor

• Negotiate contract

• Develop requirements

• Handle requirements changes

• Track vendor progress

• Monitor quality

• Validate software meets requirements

– Make communication with the vendor a priority
• Loss of visibility a high risk

– Will still need to use some of your own technical
resources

3

Offshore Outsourcing

• Offshore companies offer considerably

lower costs – could be 35% or more

• Consider communication challenges

– Time issues, Language issues

• Language issues

– Problem if code documented in Russian or

Chinese?

• Travel expenses

Outsourcing Summary

• Efficacy
– Potential reduction from nominal schedule: Excellent

– Improvement in progress visibility: None

– Effect on schedule risk: Increased Risk

– Chance of first-time success: Good

– Chance of long-term success: Very Good

• Major Risks
– Transfer of expertise outside the organization

– Loss of control over future development

– Compromise of confidential information

– Loss of progress visibility and control

• Major Interactions
– Tradeoff between control/visibility for development speed

4

Productivity Environments

• Creating an environment that fosters productivity
– Wrong environment can prevent the extraction of
working software from the brains of developers

– Flow Time
• A “flow state” is a state of total immersion in a problem that
facilitates understanding and generation of solutions

• DeMarco 1987 : Developers need 15 minutes or more to
enter a state of flow, can’t be constantly interrupted

– Hygiene Factors
• Inadequate office facilities can seriously erode motivation
and productivity

• More than adequate facilities does not increase motivation
and productivity

Using Productivity Environments

• At least 80 square feet of floor space per developer

• At least 15 square feet of desk space capable of holding
books

• Some means of stopping phone interruptions

• Some means of stopping in-person interruptions

• Some means of shutting out unwanted noise

• At least 15 feet of bookshelf space

• View of external window

• Access to whiteboard, bulletin board space

• Convenient access to
– team members, printer, copy machine, conference room, common

office supplies

5

Logitech Study

• Survey of 1003 US office workers

• Rated office as “C+”

• 46 percent of women and 32 percent of men said their
emotional state was closely tied to the condition of their
workspace

• 7 percent said their desk was a safety hazard

• 6 percent were embarrassed by their space

• 9 percent wouldn't want their mother to see where they
work

• Lack of privacy was the top annoyance cited by those
surveyed. Other irksome features mentioned by many
included "not enough shelves to put things", "no window"
and "too much clutter."

Programmer Competition Results

Factor Top 25% Bottom 25%

Dedicated floor space 78 sq ft 46 sq ft

Acceptably quiet 57% yes 29% yes

Acceptably private 62% yes 19% yes

Silenceable phone 52% yes 10% yes

Calls can be diverted to

voicemail or other person

76% yes 19% yes

Frequent needless

interruptions

38% yes 76% yes

Workspace makes

developers feel

appreciated

57% yes 29% yes

6

Productivity Environments

Summary
• Efficacy

– Potential reduction from nominal schedule: Good

– Improvement in progress visibility: None

– Effect on schedule risk: None

– Chance of first-time success: Good

– Chance of long-term success: Very Good

• Major Risks
– Status-oriented office improvements instead of productivity-

oriented improvements

– Transition downtime

– Political repercussions of preferential treatment

• Major Interactions
– Trades small increase in cost for large increase in productivity

Rapid Development Languages

(RDL)

• “Power Tools” for developers

• If building a dog house, it will probably be much
faster to use a power saw, belt sander, paint
sprayer, nail gun, etc. than hand tools
– But higher chance of going to the hospital

– More intricate quality can be performed by hand tools

• Examples
– Visual Basic, Delphi, Microsoft Access,
DreamWeaver

– Allow developer to code at a higher level of
abstraction than they could with traditional languages

7

Approximations

• Size in Lines of Code

Function

Points

Fortran Cobol C C++ Pascal VB

1 110 90 125 50 90 30

100 11,000 9,000 12,500 5,000 9,000 3,000

500 55,000 45,000 62,500 25,000 45,000 15,000

1,000 110,000 90,000 125,000 50,000 90,000 30,000

5,000 550,000 450,000 625,000 250,000 450,000 150,000

Managing Risks of RDL’s

• Silver bullet syndrome
– Unlikely using a new language will reduce end-to-end time by

25% as vendor may claim

– Classic mistake to overestimate savings

• RDL not suited to some projects
– May not have functionality, require too much setup, etc.

• Failure to scale up to large projects
– RDL’s frequently lack features to support large projects

– Same features that are convenient on small projects can cause
problems on large ones
• Weak data typing

• Poor support for modularity

• Weak debugging

• Weak ability to call routines in other languages

• May encourage sloppy programming practices
– Doesn’t mean you don’t have to design anymore

8

RDL Summary

• Efficacy
– Potential reduction from nominal schedule: Good

– Improvement in progress visibility: None

– Effect on schedule risk: Increased Risk

– Chance of first-time success: Good

– Chance of long-term success: Very Good

• Major Risks
– Silver-bullet syndrome and overestimated savings

– Failure to scale up to large projects

– Encouragement of sloppy programming practices

• Major Tradeoffs
– Trades some design and implementation flexibility for reduced

implementation time

Requirements Scrubbing

• Requirements specifications drawn up

– Minimal specification seeks minimum
requirements

• Requirements scrubbing

– Carefully examine specs for unnecessary or
overly complex requirements, which are then
removed

– Product size the largest contributor to
project’s cost and duration – by eliminating
these requirements the schedule is shortened

9

Requirements Scrubbing Summary

• Efficacy

– Potential reduction from nominal schedule: Very

Good

– Improvement in progress visibility: None

– Effect on schedule risk: Decreased Risk

– Chance of first-time success: Very Good

– Chance of long-term success: Excellent

• Major Risks

– Elimination of requirements that are later reinstated

Reuse

• Planned Reuse
– Long-term strategy to build a library of frequently
used components

– Allows new programs to be assembled quickly from
existing components, e.g. ActiveX Controls

• Opportunistic Reuse
– Could be used opportunistically as a short-term
practice by salvaging code for a new program from
existing programs

– Less savings than long-term planned reuse

• Can also apply to designs, data, documentation,
specs, plans, etc.

10

Opportunistic Reuse

• Opportunity arises if you discover an
existing system has something in common
with a new system to build

• Adapt or Salvage?

– Adapt old system to the new one

– Design new system from scratch but salvage
components from the old one

– Usually Salvage works best – requires you to
understand only small pieces of the old
program in isolation

Opportunistic Reuse

• Overestimated Savings
– Easy to overestimate potential effort and schedule
savings

– Takes time to figure out what can be reused

– Takes time to modify old parts to fit into the new

• Experiences
– French military: 37% improvement in productivity via
reuse
• Credited success to information hiding, modularity

– NASA
• 35% code salvage using functional design

• 70% code salvage using OO based design

– Can be done at individual developer level, not
managerial

11

Planned Reuse

• Doesn’t help on first project, but should on
subsequent ones

• Requires more planning
– Survey software to identify components that occur
frequently

– Generally requires survey outside own small group,
but across many groups or whole organization

– Needs management commitment, long-term
commitment to succeed

– Measure productivity to see if it is paying off

– May require evaluation of architectures being used

Planned Reuse

• Focus on domain-specific components

– E.g. reusable financial component, file-
transfer component, messaging component

• Create small, sharp components

– Easier to use than large, bulky, general
components

• Focus on information hiding,
encapsulation

• Focus on quality not size

12

Reuse Risks

• Wasted Effort
– Creating reusable components costs 2-3 times as much as

creating a 1-off component

– Wasted effort if it is not reused, ideally three times
• If not going to be reused three times, might not be worth the effort

• Might even make a 1-off first, then if it comes up again make the
reusable component

• Shifting Technology
– If technology changes before it can be reused, it will probably not

be reused

• Overestimated Savings
– Reuse savings generally overestimated; still other costs to write

code, modify, understand

• Bugs
– Bugs in a reused component proliferate the problem

– Bug might not appear in original project, but appear in new project

Reuse Summary

• Efficacy
– Potential reduction from nominal schedule: Excellent

– Improvement in progress visibility: None

– Effect on schedule risk: Decreased Risk

– Chance of first-time success: Poor

– Chance of long-term success: Very Good

• Major Risks
– Wasted effort if the components prepared for reuse are
not selected carefully

• Major Interactions
– Coordinate with using productivity tools

– Must have foundation of S/W development
fundamentals

13

Signing Up

• Technique that can lead to extraordinary levels
of motivation

• Shackleton’s advertisement for explorers:
– MEN WANTED for Hazardous Journey, Small Wages,
Bitter Cold, Long Months of Complete Darkness,
Constant Danger, Safe Return Doubtful, Honor and
Recognition in Case of Success

– Drew 5000 applications from which 27 were selected

• Leader or manager asks potential team
members to “sign up” to make a commitment to
seeing the project through to success

Using Signing Up

• Frame a challenge and a vision

– Key to motivation is a clear vision and
extraordinary accomplishment

– Project completion alone not enough

– Ex:
• First to put an astronaut on the moon

• Design and build a totally new piece of software

• Be the first team in the organization to develop a
complete product in 8 months

• Create a package that places #1 in PC Magazine
Rankings

14

Using Signing Up

• Give people a choice

– Doesn’t work if people don’t have a choice of
whether or not to sign up

– Can limit pool

– Must be done up-front at start of project or
upon coming across a crisis, doesn’t work in
the middle of a project

• Small teams

– Works best with small teams with identity, not
at the level of a large organization

Unequivocal Commitment

• Members must commit to get the job done no matter
what

• Kerr’s report
– Team focused 8 hour day on project only, sweeping aside normal

responsibilities

– At high point, worked until midnight with a half-hour break for
pizza and beer

• Microsoft Windows NT
– Meant foregoing everything: evenings, weekends, holidays,

normal sleeping hours

– When not sleeping, were working

– One team member answered email from the hospital while his
wife was in labor

– Cots kept in offices, many would go several days without going
home

15

Unequivocal Commitment

• But not all organizations require

extraordinary overtime

• IBM

– Part of the commitment can be not to work

any overtime

– More severe constraints can lead to radically

productive solutions that normally considered

Sign Up Risks

• Increased inefficiency
– Teams have a tendency to work hard, not work smart, may make

more mistakes

• Decreased status visibility
– Less insight into true progress as developers focus on the work

alone

• Loss of control
– Signed-up team takes on a life of its own, can be hard to make it

change direction without taking away empowerment

• Smaller talent pool
– Not everyone wants to sign up

• Burnout
– Long hours can take a heavy toll

16

Signing Up Summary

• Efficacy
– Potential reduction from nominal schedule: Very Good

– Improvement in progress visibility: None

– Effect on schedule risk: Increased Risk

– Chance of first-time success: Fair

– Chance of long-term success: Good

• Major Risks
– Increased inefficiency

– Reduced status visibility and control

– Smaller talent pool for project

– Burnout

• Major Tradeoffs
– Trades possible decreases in visibility, control, and efficiency for

major increase in motivation

Lifecycle Models

• Incremental Development w/Staged

Delivery

• Throwaway Prototyping

17

Theory-W Management

• Project management framework for
reconciling competing interests among
stakeholders

• Ex:

– Customers: Quick schedule, low budget

– Boss: No overruns, no surprises

– Developers: Interesting work, home life

– End-Users: Lots of features, user-friendly, fast

– Maintainers: No defects, good documentation

Theory-W

• Goal of Theory-W is to make a winner of
all the stakeholders

• All stakeholders explicitly express what is
necessary in order to “win”

• Everyone realizes everyone else’s win
conditions

• Improves schedule savings in improved
efficiency of working relationships,
improved progress visibility, reduced risk

18

Steps in Theory-W

• 1. Establish a set of win-win preconditions before starting
the project
– Understand how stakeholders want to win

– Establish reasonable expectations on parts of all stakeholders

– Match people’s tasks to their win conditions

– Provide an environment that supports the project’s goals

• 2. Structure a win-win software process
– Realistic plan

– Identify and manage win-lose and lose-lose risks

– Keep people involved

• 3. Structure a win-win software product
– Match product to end users’ and maintainer’s win conditions

Theory-W Summary

• Efficacy

– Potential reduction from nominal schedule: None

– Improvement in progress visibility: Very Good

– Effect on schedule risk: Decreased Risk

– Chance of first-time success: Excellent

– Chance of long-term success: Excellent

• Major Risks

– None

• Major Tradeoffs

– Effective with schedule negotiations

19

Timebox Development

• Have you noticed an increase in productivity the

day before flying off for vacation?

– Get laundry done, wrap up work, pay bills, quick

shower, less goofing off, etc.

– Could do this every day, but priorities push these

down

• Timebox

– Fixed deadline for milestones

– Refine product to fit schedule deadlines instead of

redefining the schedule to fit the project

Timebox Benefits

• Emphasizes priority of the schedule
– Schedule is absolutely fixed

– Stresses it is of utmost importance

• Avoids the 90-90 problem
– Where the last 10% takes longer than the first 90%

• Clarifies feature priorities
– Tight time constraints focus attention on the top of the
priority list

• Limits developer gold-plating

• Controls feature creep
– Generally a function of time

• Helps motivate developers

20

Using Timebox Development

• End users must be willing to sacrifice features

for schedule

• Generally uses prototyping

– Grows like an onion with essential features at the

core

– Other features in outer layers

– Lots of user involvement

• Timeboxes usually last 60-120 days

– Shorter periods not sufficient to develop significant

systems

Entrance Criteria

• Prioritized list of features

• Realistic schedule estimate

– Requires some experience

• Right kind of project

– Best for in-house business software

– Project that can be built with rapid

development languages, CASE tools

• Sufficient end-user involvement

21

Timebox Risks

• Attempting to timebox unsuitable work products
– Not good for project planning, requirements analysis, or
design
• Too many downstream implications

• Sacrificing quality instead of features
– Customer must be committed to cutting features instead
of quality

– Hard to work on a tight schedule, high quality, and all
features

– If quality suffers, the schedule will suffer too

• True timeboxing
– Software accepted or thrown away at the deadline

– Makes it clear the quality must be acceptable

Timebox Summary

• Efficacy
– Potential reduction from nominal schedule: Excellent

– Improvement in progress visibility: None

– Effect on schedule risk: Decreased Risk

– Chance of first-time success: Good

– Chance of long-term success: Excellent

• Major Risks
– Sacrificing quality instead of features

– Attempting to timebox unsuitable work products

• Major Tradeoffs
– Trades feature-set control for development-time control

22

Tools Group

• Set up a group that’s responsible for

gathering intelligence about, evaluation,

coordinating the use of, and disseminating

new tools within an organization

• Allows for some trial/error in one group

instead of many groups

• Promotes the use of software tools among

the organization

Tools Group Summary

• Efficacy

– Potential reduction from nominal schedule:
Good

– Improvement in progress visibility: None

– Effect on schedule risk: Decreased Risk

– Chance of first-time success: Good

– Chance of long-term success: Very Good

• Major Risks

– Bureaucratic overcontrol of information about
and deployment of tools

23

Top-10 Risks

• A list consisting of the 10 most serious

risks ranked from 1 to 10

• Each risk has a status and plan to address

the risk

• Updated weekly

• Raises awareness of risks and contributes

to timely resolution of them

Top-10 Summary

• Efficacy

– Potential reduction from nominal schedule:

None

– Improvement in progress visibility: Very Good

– Effect on schedule risk: Decreased Risk

– Chance of first-time success: Excellent

– Chance of long-term success: Excellent

• Major Risks

– None

24

User Interface Prototyping

• User Interface is developed quickly to

explore the design and system

requirements

• Often a special-purpose prototyping

language used (e.g. VB)

• Thrown away or evolved into final product

UI Prototyping Benefits

• Reduced risk
– Find bad interfaces early

– Best suited to business software where end users are available,
but possible with commercial products as well

• Smaller systems
– Unexpectedly, features that developers think users want are not

always the same as the features that users actually want

– Features that users want but work poorly in a live system are also
weeded out

– Users get a better understanding of the system and request fewer
changes

• Less complex systems
– End-users help focus on more usable, less complex systems

• Improved visibility

25

Using UI Prototyping

• Throwaway or Evolve

– Discussed previously, usually throwaway better but

harder to do

• Prototyping languages useful

– Hollywood Façade

• Smoke, Mirrors, Hidden man behind the curtain

• Enforced throwaway idea

• End-User Involvement throughout the lifecycle

– Careful, users may not know what they’re looking at

– 2 second canned printout example

UI Prototyping Summary

• Efficacy

– Potential reduction from nominal schedule:

Good

– Improvement in progress visibility: Fair

– Effect on schedule risk: Decreased Risk

– Chance of first-time success: Excellent

– Chance of long-term success: Excellent

• Major Risks

– Prototype polishing

26

Voluntary Overtime

• Provide developers with meaningful work

and motivation so they will want to work

more than required

• Extra hours can provide direct productivity

boost

• Care must be taken to avoid excessive,

mandatory overtime

Using Voluntary Overtime
• Use developer-pull instead of management-push

– Motivation research shows that increasing the driving

force first increases performance, but excessive force

drives it down

– Pressing programmer for rapid bug elimination may

be the worst strategy, but it is the most common

VH

H

M

L

VL

Dev

Motiv.

VL L Ave H VH

Pressure

Ave
Optimum

27

Using Voluntary Overtime

• Developers are naturally self-motivated, so
OK to ask for a little overtime, but not too
hard

• Motivate

– Achievement of something significant

– Possibility for growth

– Work itself

– Personal Life

– Technical supervision opportunity

Using Voluntary Overtime

• Don’t make it mandatory
– Produces less total output

– Average developer already working close to maximum level of
motivation

– Pushing developers when already motivated causes a decline in
motivation
• Decline over entire work hours, not just overtime hours

• Ask for overtime you can actually get
– Boddie, author of Crunch Mode: 60-100 hours a week for a few

weeks at a time

– Maguire: Start doing too many personal tasks at work with that
many hours, people working 12 hour days really only getting 8
hours of work done

– Compromise, 50 hours a week?

– Beware of burnout

28

Voluntary Overtime Summary

• Efficacy
– Potential reduction from nominal schedule: Good

– Improvement in progress visibility: None

– Effect on schedule risk: Increased Risk

– Chance of first-time success: Fair

– Chance of long-term success: Good

• Major Risks
– Schedule penalties resulting from excessive schedule pressure

and excessive overtime

– Reduced capacity to respond to emergency need for still more
hours

• Major Tradeoffs
– Requires sincere and nonmanipulative motivational practices

– Usually required for Miniature Milestones, Timebox, Sign Up

