
1

Software Design and
Architecture

Theoretical Principles and Design
Methods

What is Design?

• Design is the process of creating a plan or
blueprint to follow during actual
construction

• Design is a problem-solving activity that is
iterative in nature

• The outcome of design is the design
document or technical specification (if
emphasis on notation)

2

“Wicked Problem”

• Software design is a “Wicked Problem”
– Design phase can’t be solved in isolation

• Designer will likely need to interact with users for
requirements, programmers for implementation

– No stopping rule
• How do we know when the solution is reached?

– Solutions are not true or false
• Large number of tradeoffs to consider, many acceptable

solutions
– Wicked problems are a symptom of another problem

• Resolving one problem may result in a new problem
elsewhere; software is not continuous

Systems-Oriented Approach

• The central question: how to decompose a
system into parts such that each part has
lower complexity than the system as a
whole, while the parts together solve the
user’s problem?

• In addition, the interactions between the
components should not be too
complicated

• Vast number of design methods exist

3

Design Considerations

• “Module” used often – usually refers to a method
or class

• In the decomposition we are interested in
properties that make the system flexible,
maintainable, reusable
– Abstraction
– Modularity
– Information Hiding
– Complexity
– System Structure

Abstraction

• Abstraction
– Concentrate on the essential features and ignore,

abstract from, details that are not relevant at the level
we are currently working on

– E.g. Sorting Module
• Consider inputs, outputs, ignore details of the algorithms until

later

– Two general types of abstraction
• Procedural Abstraction
• Data Abstraction

4

Procedural Abstraction
• Fairly traditional notion

– Decompose problem into sub-problems, which are
each handled in turn, perhaps decomposing further
into a hierarchy

– Methods may comprise the sub-problems and sub-
modules, often in time

Data Abstraction

• From primitive to complex to abstract data
types
– E.g. Integers to Binary Tree to Data Store for

Employee Records

• Find hierarchy in the data

5

Modularity

• During design the system is decomposed
into modules and the relationships among
modules are indicated

• Two structural design criteria as to the
“goodness” of a module
– Cohesion : Glue for intra-module

components
– Coupling : Strength of inter-module

connections

Levels of Cohesion
1. Coincidental

• Components grouped in a haphazard way
2. Logical

• Tasks are logically related; e.g. all input routines. Routines do not
invoke one another.

3. Temporal
• Initialization routines; components independent but activated about the

same time
4. Procedural

• Components that execute in some order
5. Communicational

• Components operate on the same external data
6. Sequential

• Output of one component serves as input to the next component
7. Functional

• All components contribute to one single function of the module
• Often transforms data into some output format

6

Coupling

• Measure of the strength of inter-module
connections

• High coupling indicates strong dependence
between modules
– Should study modules as a pair
– Change to one module may ripple to the next

• Loose coupling indicates independent modules
– Generally we desire loose coupling, easier to

comprehend and adapt

Types of Coupling
1. Content

– One module directly affects the workings of another
– Occurs when a module changes another module’s data
– Generally should be avoided

2. Common
– Two modules have shared data, e.g. global variables

3. External
– Modules communicate through an external medium, like a file

4. Control
– One module directs the execution of another by passing control

information (e.g. via flags)
5. Stamp

– Complete data structures or objects are passed from one module to
another

6. Data
– Only simple data is passed between modules

7

Modern Coupling

• Modern programming languages allow private,
protected, public access

• Coupling may be modified to indicate levels of
visibility, whether coupling is commutative

• Simple Interfaces generally desired
– Weak coupling and strong cohesion
– Communication between programmers simpler
– Correctness easier to derive
– Less likely that changes will propagate to other

modules
– Reusability increased
– Comprehensibility increased

Information Hiding
• Each module has a secret that it hides from other

modules
– Secret might be inner-workings of an algorithm
– Secret might be data structures

• By hiding the secret, changes do not permeate the
module’s boundary, thereby
– Decreasing the coupling between that module and its

environment
– Increasing abstraction
– Increasing cohesion (the secret binds the parts of a module)

• Design involves a series of decisions. For each such
decision, questions are: who needs to know about these
decisions? And who can be kept in the dark?

8

Complexity

• Complexity refers to attributes of software that
affect the effort needed to construct or change a
piece of software
– Internal attributes; need not execute the software to

determine their values

• Many different metrics exist to measure
complexity

• Two broad classes
– Intra-Modular attributes
– Inter-Modular attributes

Intra-Modular Complexity

• Two types of intra-modular attributes
– Size-Based Metrics

• E.g. Lines of Code
– Serious objections. Why?

– Structure-Based Metrics
• E.g. complexity of control or data structures

9

Halstead’s Software Science
• Size-based metric
• Uses number of operators and operands in a piece of software

– n1 is the number of unique operators
– n2 is the number of unique operands
– N1 is the total number of occurrences of operators
– N2 is the total number of occurrences of operands

• Halstead derives various entities
– Size of Vocabulary: n = n1+n2
– Program Length: N = N1+N2
– Program Volume: V = Nlog2n
– Program Level: L = V*/V

• V* is the volume for the most compact representation for the algorithm
– Programming Effort: E = V/L
– Programming Time in Seconds: T = E/18
– Numbers derived empirically, also based on speed human memory

processes sensory input

Software Science Example
1. procedure sort(var x:array; n: integer)
2. var i,j,save:integer;
3. begin
4. for i:=2 to n do
5. for j:=1 to i do
6. if x[i]<x[j] then
7. begin save:=x[i];
8. x[i]:=x[j];
9. x[j]:=save
10. end
11. end

10

Software Science Example

N1=35n1=14

6[]

1<

5:=

1if…then

2for..do

2begin…end

2,

2integer

6;

1array

3:

2var

1sort()

1procedure

#Operator

N2=25n2=7

11

12

3save

5j

6i

2n

7x

#Operand

Size of vocabulary: 21
Program length: 60
Program volume: 264
Program level: 0.04
Programming effort: 6000
Estimated time: 333 seconds

Structure-Based Complexity

• McCabe’s Cyclomatic Complexity
• Create a directed graph depicting the

control flow of the program
– CV = e – n + p + 1

• CV = Cyclomatic Complexity
• e = Edges
• n = nodes
• p = connected components

11

Cyclomatic Example

1 2

For Sorting Code; numbers refer to line numbers

3 4 5 6

7 8 9

10

11

CV = 13 – 11 + 1 + 1 = 4

McCabe suggests an upper limit of 10

Shortcomings of Complexity
Metrics

• Not context-sensitive
– Any program with five if-statements has the same

cyclomatic complexity
– Measure only a few facts; e.g. Halstead’s method

doesn’t consider control flow complexity
• Others?
• Minix:

– Of the 277 modules, 34 have a CV > 10
– Highest has 58; handles ASCII escape sequences. A

review of the module was deemed “justifiably
complex”; attempts to reduce complexity by splitting
into modules would increase difficulty to understand
and artificially reduce the CV

12

System Structure – Inter-Module
Complexity

• The design may consist of modules and their relationships
• Can denote this in a graph; nodes are modules and edges are

relationships between modules
• Types of inter-module relationships:

– Module A contains Module B
– Module A follows Module B
– Module A delivers data to Module B
– Module A uses Module B

• We are mostly interested in the last one, which manifests itself via a
call graph
– Possible shapes:

• Chaotic
• Directed Acyclic Graph (Hierarchy)
• Layered Graph (Strict Hierarchy)
• Tree

Module Hierarchies

13

Graph Metrics
• Metrics use:

– Size of the graph
– Depth
– Width (maximum number of nodes at some level)

• A tree-like call graph is considered the best design
– Some metrics measure the deviation from a tree; the tree

impurity of the graph
– Compute number of edges that must be removed from the

graph’s minimum spanning tree
• Other metrics

– Complexity(M) = fanin(M)*fanout(M)
– Fanin/Fanout = local and global data flows

Software Architecture

• Selecting an appropriate architecture can
help reduce our complexity

• Definition of Architecture
– The software architecture of a system is the

structure or structures of the system that
comprise software components, the externally
visible properties of those components, and
the relationships among them”

14

Role of the Architect

• Global design

Architectural Styles

• High-level abstractions of components and
communication
– Even higher than data types, algorithmic pseudocode
– Also known as design patterns or architectural

patterns

• Architectural styles become reusable for
different problems
– Collections of modules or classes that are often used

in combination to provide a useful abstraction

15

Some common architectural styles

• Main with Subroutines and Shared data
• Data abstraction
• Implicit invocation
• Pipes and filters
• Repository (blackboard)
• Layers of abstraction
• Model-view-controller

Example Problem: Producing a
KWIC-Index

• Book title “Introduction to Software Engineering”
• Reader might look under “I” or under “S” for

Software Engineering, or maybe even “E” for
Engineering

• Solution: KWIC-Index (Key Word In Context)
– Given a title generate n shifts, where n is the number

of words in the title
– w1 w2 w3
– w2 w3 w1
– w3 w1 w2
– Sort shifts, output is a KWIC-index for one title
– Repeat for a list of titles

16

KWIC-Index

• Two titles, “Introduction to Software Engineering”
and “Rapid Software Development”

• Introduction to Software Engineering
– Engineering Introduction to Software
– Introduction to Software Engineering
– Software Engineering Introduction to
– to Software Engineering Introduction

• Rapid Software Development
– Development Rapid Software
– Rapid Software Development
– Software Development Rapid

First Architecture: Main Program
and Subroutines with Shared Data

• Following tasks must be accomplished
– Read and store the input (list of titles)
– Determine all shifts
– Sort the shifts
– Output the sorted shifts

• Allocate each task to different modules
• Each module shares the same internal

data representation

17

Module Details
• Input

– Input stored in memory so that the lines are available
for processing by later modules

– Stored in a table called Store

• Shift
– Invoked after all lines are stored
– Builds a table called Shifts that contains an array of

shifts that contains, for each shift, the index in Store
of the first character of that shift

Rapid Software Development1

Introduction to Software Engineering0

[0, 0], [1, 7], [2, 16]1

[0, 0], [1, 13], [2, 16], [3, 25]0

Module Details
• Sort

– Produces a new table, Sorted, with the same structure as Shifts
but the ordering is such that the corresponding shifts are in
lexicographic order

• Output
– Produces a neat output of the sorted shifts

• Control
– Calls the other modules in the appropriate order
– Deals with error messages, memory organization, bookkeeping

duties

[0, 16], [1, 0], [2, 7]1

[0, 25], [1, 0], [2, 16], [3, 13]0

18

Module Diagram

Main Program Style
• Approach: Hierarchy of functions resulting from

functional decomposition; single thread of control
• Context: programming languages allowing nested

procedures
• Properties:

– Modules in a hierarchy (weak or strong); procedures grouped
into modules according to coupling/cohesion principles

– Modules store local data and shared access to global data
– Control structure: single thread, centralized control

• Variants: distributed processing with RPC for process
invocation

19

Second Architecture: Abstract Data
Types

• Previous decomposition required that each
module had knowledge about the precise
storage of data
– Data representation must be selected early
– What if wrong representation picked? E.g. fixed char

array, perhaps too small, etc.
• One solution: Use abstract data types so that

these data representation decisions are made
locally within a module instead of globally
– Implement Get/Set methods that input or return data

in the desired format

Module Details : ADT

• Store
– Module implements methods callable by users of the

module
• Initialize()
• AddLine(String s) - Add a new line to storage
• Lines() – Return number of lines
• Line(int L) – Return line L
• Words(int r) – Return number of words in line r
• Word(int L, int i) – Return word i of line L

• Input
– Initializes Store module, adds lines to the module

from I/O

20

Module Details : ADT
• Shift

– Uses the Store module to compute shifts
– Initialize()
– ComputeShifts() – Computes all shifts
– ShiftLines() – Returns total number of Lines
– ShiftWords(int L) – Returns number of words (shifts) in shift line L
– ShiftLine(int L, int i) – Returns entire title for shift line L ,shift i
– ShiftWord(int L, int i,int j) – Returns word j of line L for shift i

• Sort
– Uses Shift module to compute sort
– Initialize()
– Sort()
– SortedLines() – Returns total number of lines
– SortedWords(int L) – Returns number of words (shifts) in line L
– SortedLine(int L, int i) – Returns entire title for line L ,shift i

ADT Module Diagram (Simplified)

Control

Input Output

Input Output

Store Shift Sort

S
or

te
dL

in
e

S
or

t

S
hi

ftL
in

es

C
om

pu
te

S
hi

fts

A
dd

Li
ne

s

In
iti

al
iz

e

Each module also has
its own data table

21

ADT Style

• Approach: Identifies and protects related bodies
of information. Suited when data representation
is likely to change.

• Context: OO-methods guiding the design; OO-
languages which provide the class-concept

• Properties:
– Each component has its own local data (secret it

hides)
– Messages sent via procedure calls
– Usually a single thread of control; control is

decentralized

Third Architecture: Implicit
Invocation

• Event-based processing
• With Abstract data types, after the input was

read, the Shifts module is invoked explicitly
• We may loosen the binding between modules by

implicitly invoking modules
– If something interesting happens, an event is raised
– Any module interested in that event may react to it
– Example: perhaps we would like to process data

concurrently line by line
• Raise an event when a line is ready to be processed by the

next module

22

Implicit Invocation Diagram
Control

Input Output

Input Output

Store Table Shift Table

S
hi

ftL
in

es

C
om

pu
te

S
hi

fts

A
dd

Li
ne

s

In
iti

al
iz

e

Store Sort

Implicit Invocation

Implicit Invocation Style

• Approach: Loosely coupled collection of
components. Useful for applications which must
be reconfigurable.

• Context: requires event handler, through OS or
language-specific features.

• Properties:
– Independent, reactive processes, invoked when an

event is raised
– Processes signal events and react to events, or

directly invoked
– Decentralized control. Components do not know who

is going to react to a particular event

23

Fourth Architecture: Pipes and
Filters

• Major transformations in KWIC-index programs:
– From lines to shifts
– From shifts to sorted shifts
– From sorted shifts to output

• Since each program in this scheme reads its input in the
same order it is written by its predecessor, we can directly
feed the output from one module to the input of the next

• Pipes and Filters model in UNIX
– KWIC < input | Shift | Sort | Output > output

– Data stream format of internal structure must be known from one
program to the next

– Enhancements are easy by adding another filter (e.g. filtering out
stop words)

Pipes and Filters Diagram

24

Pipes and Filters Style
• Approach: independent, sequential transformations on

ordered data. Usually incremental, ASCII pipes.
• Context: series of incremental transformations. OS-

functions transfer data between processes. Error-
handling difficult (who is doing what? Where did the
error occur?)

• Properties:
– Continuous data flow; components incrementally transform data
– Filters for local processing
– Data streams (usually plain ASCII)
– Control structure: data flow between components; each

component has its own thread of control
• Variants: From pure filters with little internal state to

batch processes

Evaluation of the Architectures

• All of the proposed architectures will work
• Architect should evaluate the architectures with

respect to
– Changes in data representation
– Changes in algorithms
– Changes in functionality
– Degree to which modules can be implemented

independently
– Comprehensibility
– Performance
– Reuse

25

Architecture Evaluation

+++-Reuse

--++Performance

+O+-Comprehensibility

+++-Independent Development

++-OChanges in functionality

+OO-Changes in algorithm

-++-Changes in data representation

Pipes &
Filters

Implicit
Invocation

ADTShared
Data

Some Other Styles

• Repository
• Layered
• Client Server
• Model View Controller (MVC)

• We will cover other patterns in Chapter 8

26

Repository Architecture

• Central data store
• Components to store, access, retrieve

data in the data store

Repository or Blackboard Style
• Approach: manage richly structured information to be

manipulated in many different ways. Data is long-lived.
• Context: shared data to be acted upon by multiple clients

or processes
• Properties

– Centralized body of information. Independent computational
elements.

– One shared memory component, many computational processes
– Direct access or procedure call to the shared memory

component
• Variants: traditional data base systems, compilers,

blackboard systems

27

Layered Architecture

• Build system in terms of hierarchical layers
and interaction protocols

• E.g. TCP/IP Stack, Data Access

Layered Style
• Approach: distinct, hierarchical classes of services.

“Concentric circles” of functionality
• Context: a large system that requires decomposition. E.g.

OSI model, virtual machines
• Properties

– Hierarchy of layers, often limited visibility, promotes layer
reusability

– Collections of procedures (module)
– Limited procedure calls
– Control structure: single or multiple threads

• Drawbacks
– Performance
– Not easy to construct system in layers
– Hierarchical abstraction may not be evident from requirements

�

28

Client-Server
• Popular form of distributed system architecture

– Client requests an action or service
– Server responds to the request

• Often server does not know number of potential clients or
their identities

• Properties
– Information exchanged in a need basis
– Same data can be presented in different ways in different clients

• Drawbacks
– Security
– System management
– “Sophisticated” application development
– More resources to implement and support

Model-View-Controller (MVC)
• Archetypical example of a design pattern
• Three components

– Model : Encapsulates system data and operations on the data
– View : Displays data obtained from the model to the user
– Controller : Handles input actions (e.g. send requests to the

model to update data, send requests to the view to update
display)

• Separating user interface from computational elements
considered a good design practice
– Why?

29

MVC Style
• Approach: Separation of UI from application is

desirable due to expected UI adaptations
• Context: interactive applications with a flexible

UI
• Properties:

– UI (View&Controller) is decoupled from the
application (Model component)

– Collections of procedures (module)
– Procedure calls
– Generally single thread, but multiple threads possible

Other Common Design Patterns
• Proxy Pattern

– A client needs services from another component
– Instead of hard-coding direct access, may have better

efficiencies or security by additional control mechanisms
separate from both the client and the component to access

– The client communicates with a proxy representative rather than
the component itself, which does necessary pre/post processing

• Command Processor Pattern
– User interfaces must be flexible or provide functionality beyond

direct user functions, e.g. Undo or Log facilities
– A separate component, the command processor, takes care of

all commands. The command processor schedules the
execution of commands, stores them for undo, logs, etc.
Execution delegated to another component.

30

Summary
• Software architecture is concerned with the description of

elements from which systems are built, the interaction
among those elements, and patterns that guide their
composition

• Complexity is still a novel and immature branch of
Software Engineering

• Helps to have a repertoire of known architectures and use
the one most appropriate
– E.g. Shared Data, ADT, Implicit Invocation, Pipes/Filters, Layers,

Repository, Client/Server, MVC
• Architecture is important

– Starting point for design, captures early design decisions
– Vehicle for stakeholder communication
– Best known practices
– Framework for software reuse

