
1

eXtreme Programming

Overview

What’s wrong with software today?

• Software development is risky and difficult

to manage

• Customers are often dissatisfied with the

development process

• Programmers are also dissatisfied

2

One Alternative: Agile
Development Methodologies

• XP = eXtreme Programming
– It does not encourage blind hacking. It is a systematic

methodology.

– It predates Windows “XP”.

• Developed by Kent Beck
– XP is “a light-weight methodology for small to medium-sized teams

developing software in the face of vague or rapidly changing
requirements.”

• Alternative to “heavy-weight” software development
models
(which tend to avoid change and customers)
– "Extreme Programming turns the conventional software process

sideways. Rather than planning, analyzing, and designing for the
far-flung future, XP programmers do all of these activities a little
at a time throughout development.”
-- IEEE Computer , October 1999

Traditional Processes are ‘Heavy’

C
o

s
t
o

f
C

h
a

n
g

e

Requirements Design Implementation Testing Maintenance

3

Boehm’s Curve

• To accomplish this:
– We need lots of up front planning, resulting in

“heavy” methodologies

– Every bug caught early saves money, since models
are easier to modify than code

– Large investments are made in up front analysis and
design models, because the of the cost of late error
discovery

– This leads to a waterfall mentality with BDUF (Big
Design Up Front)

• Proponents of XP argue that logic is based on
development in the 1970’s and 1980’s

What’s Changed?

• Computing power has increased astronomically

• New tools have dramatically reduced the
compile/test cycle

• Used properly, OO languages make software
much easier to change

• The cost curve is significantly flattened, i.e. costs
don’t increase dramatically with time

• Up front modeling becomes a liability – some
speculative work will certainly be wrong,
especially in a business environment

4

Why XP Helps

• Extreme Programming is a “light” process

that creates and then exploits a flattened

cost curve

• XP is people-oriented rather than process

oriented, explicitly trying to work with

human nature rather than against it

• XP Practices flatten the cost of change

curve.

XP Cost of Change Curve

C
o

s
t
o

f
C

h
a

n
g

e

XP cost of

change

curve

5

Embrace change

• In traditional software life cycle models, the cost of

changing a program rises exponentially over time

• A key assumption of XP is that the cost of changing a

program can be hold mostly constant over time

• Hence XP is a lightweight (agile) process:

– Instead of lots of documentation nailing down what customer

wants up front, XP emphasizes plenty of feedback

– Embrace change: iterate often, design and redesign, code

and test frequently, keep the customer involved

– Deliver software to the customer in short (2 week) iterations

– Eliminate defects early, thus reducing costs

Why does XP Help?

• “Software development is too hard to spend time on
things that don't matter. So, what really matters?
Listening, Testing, Coding, and Designing.” - Kent Beck,
“father” of Extreme Programming

• Promotes incremental development with minimal up-front
design

• Results in a “pay as you go” process, rather than a high
up-front investment

• Delivers highest business value first

• Provides the option to cut and run through frequent
releases that are thoroughly tested

6

More on XP

• XP tends to use small teams, thus reducing

• communication costs.

• XP puts Customers and Programmers in one
place.

• XP prefers index cards to expensive round-trip
UML diagramming environments

• XP's practices work together in synergy, to get a
team moving as quickly as possible to deliver
value the customer wants

Successes in industry

• Chrysler Comprehensive Compensation system

– After finding significant, initial development problems, Beck and

Jeffries restarted this development using XP principles

– The payroll system pays some 10,000 monthly-paid employees

and has 2,000 classes and 30,000 methods, went into

production almost on schedule, and is still operational today

(Anderson 1998)

• Ford Motor Company VCAPS system

– Spent four unsuccessful years trying to build the Vehicle Cost

and Profit System using traditional waterfall methodology

– XP developers successfully implemented that system in less

than a year using Extreme Programming (Beck 2000).

7

XP Process

• Planning
– User stories are written

– Release planning creates the schedule.

– Make frequent small releases.

– The Project Velocity is measured.

– The project is divided into iterations.

– Iteration planning starts each iteration.

– Move people around.

– A stand-up meeting starts each day.

XP Process

• Designing

– Simplicity.

– Choose a system metaphor.

– Use index cards for design sessions.

– Create spike solutions to reduce risk.

– No functionality is added early.

– Refactor whenever and wherever possible.

8

XP Process

• Coding

– The customer is always available.

– Code must be written to agreed standards.

– Code the unit test first.

– All production code is pair programmed.

– Only one pair integrates code at a time.

– Integrate often.

– Use collective code ownership.

– Leave optimization until the end.

– No overtime.

XP Process

• Testing

– All code must have unit tests.

– All code must pass all unit tests before it can
be released.

– When a bug is found tests are created.

– Acceptance tests are run often and the score
is published.

9

Four Core Values of XP

• Communication

• Simplicity

• Feedback

• Courage

Communication

• What does lack of communication do to projects?

• XP emphasizes value of communication in many
of its practices:

– On-site customer, user stories, pair programming,

collective ownership (popular with open source

developers), daily standup meetings, etc.

• XP employs a coach whose job is noticing when
people aren’t communicating and reintroduce
them

10

Simplicity

• ''Do the simplest thing that could possibly
work'' (DTSTTCPW) principle

– Elsewhere known as KISS

• A coach may say DTSTTCPW when he sees
an XP developer doing something needlessly
complicated

• YAGNI principle (''You ain’t gonna need it'')

• How do simplicity and communication support
each other?

Feedback

• Feedback at different time scales

• Unit tests tell programmers status of the
system

• When customers write new user stories,
programmers estimate time required to deliver
changes

• Programmers produce new releases every
2-3 weeks for customers to review

• How does valuing feedback turn the waterfall
model upside down?

11

Courage

• The courage to communicate and accept

feedback

• The courage to throw code away

(prototypes)

• The courage to refactor the architecture of

a system

• Do you have what it takes?

Twelve XP Practices

• The Planning Game

• Small Releases

• Metaphor

• Simple Design

• Test-driven

development

• Refactoring

• Pair Programming

• Collective

Ownership

• Continuous

Integration

• 40-Hours a Week

• On-Site Customer

• Coding Standards

12

The Planning Game
• Customer comes up with a list of desired features for the

system
– How is this different from the usual requirements gathering?

• Each feature is written out as a user story
– Describes in broad strokes what the feature requires

– Typically written in 2-3 sentences on index cards

• Developers estimate how much effort each story will
take, and how much effort the team can produce in a
given time interval (iteration)

User Stories

• Drive the creation of the acceptance tests:
– Must be one or more tests to verify that a story has

been properly implemented

• Different than Requirements:
– Should only provide enough detail to make a

reasonably low risk estimate of how long the story will
take to implement.

• Different than Use Cases:
– Written by the Customer, not the Programmers, using

the Customer’s terminology

– More “friendly” than formal Use Cases

13

User Story Examples

User Stories

• Project velocity = how many days can be committed to

a project per week

– Why is this important to know?

• Given developer estimates and project velocity, the

customer prioritizes which stories to implement

– Why let the customer (rather than developer) set the

priorities?

• Later we must develop acceptance tests for
each story

14

Design

• No tedious UML

• Use CRC cards

• Web example:

http://www.extremepro

gramming.org/example/

crcsim.html

Small and simple

• Small releases
– Start with the smallest useful feature set

– Release early and often, adding a few features

each time

– Releases can be date driven or user story driven

• Simple design
– Always use the simplest possible design that gets

the job done

– The requirements will change tomorrow, so only do

what's needed to meet today's requirements

(remember, YAGNI)

15

Test-driven development

• Test first: before adding a feature, write a test for it!
– If code has no automated test case, it is assumed it does not work

• When the complete test suite passes 100%, the feature is
accepted

• Tests come in two basic flavors…

• Unit Tests automate testing of functionality as developers
write it
– Each unit test typically tests only a single class, or a small cluster of

classes

– Unit tests typically use a unit testing framework, such as JUnit
(xUnit)

– Experiments show that test-driven development reduces debugging
time

– Increases confidence that new features work, and work with
everything

– If a bug is discovered during development, add a test case to make
sure it doesn’t come back!

Test-Driven Development

• Acceptance Tests (or Functional Tests) are
specified by the customer to test that the overall
system is functioning as specified

– When all the acceptance tests pass, that user story is

considered complete

– Could be a script of user interface actions and

expected results

– Ideally acceptance tests should be automated, either

using a unit testing framework, or a separate

acceptance testing framework

16

Pair programming
• Two programmers work

together at one

machine

• Driver enters code,

while navigator

critiques it

• Periodically switch roles

• Research results:
– Pair programming increases productivity

– Higher quality code (15% fewer defects) in about half the time

(58%)

– Williams, L., Kessler, R., Cunningham, W., & Jeffries, R.

Strengthening the case for pair programming. IEEE Software,

17(3), July/August 2000

– Requires proximity in lab or work environment

Pair programming in CS classes

• Experiment at NC State

– CS1— programming in Java

– Two sections, same

instructor, same exams

– 69 in solo programming

section, 44 in paired section

– Pairs assigned in labs

• Results:
– 68% of paired students got C or better vs. 45% of solo students

– Paired students performed much 16-18 points better on first 2 projects

– No difference on third project (perhaps because lower performing solo

students had dropped before the third project)

– Midterm exam: 65.8 vs. 49.5 Final exam: 74.1 vs. 67.2

– Course and instructor evaluations were higher for paired students

• Similar results at UC Santa Cruz (86 vs. 67 on programs)

17

More XP practices

• Refactoring
– Refactor out any duplicate code generated in a coding

session

– You can do this with confidence that you didn't break anything

because you have the tests

• Collective code ownership
– No single person "owns" a module

– Any developer can work on any part of the code base at any

time

• Continuous integration
– All changes are integrated into the code base at least daily

– Tests have to run 100% both before and after integration

More practices

• 40-hour work week
– Programmers go home on time

– “fresh and eager every morning, and tired and satisfied every

night”

– In crunch mode, up to one week of overtime is allowed

– More than that and there’s something wrong with the process

• On-site customer
– Development team has continuous access to a real live

customer, that is, someone who will actually be using the

system

• Coding standards
– Everyone codes to the same standards

– Ideally, you shouldn't be able to tell by looking at it who on the

team has touched a specific piece of code

18

13th XP practice:
Daily standup meeting

• Goal: Identify items to be accomplished

for the day and raise issues

• Everyone attends,

including the customer

• Not a discussion forum

• Take discussions offline

• Everyone gets to speak

• 15 minutes

Kindergarten lessons

• Williams, L. and Kessler, R., “All I Really Need to

Know about Pair Programming I Learned In

Kindergarten,” Communications of the ACM (May

2000)

– Share everything. (Collective code ownership)

– Play fair. (Pair programming—navigator must not be passive)

– Don’t hit people. (Give and receive feedback. Stay on track.)

– Clean up your own mess. (Unit testing.)

– Wash your hands before you eat. (Wash your hands of

skepticism: buy-in is crucial to pair programming.)

– Flush. (Test-driven development, refactoring.)

– Take a nap every afternoon. (40-hour week.)

– Be aware of wonder. (Ego-less programming, metaphor.)

