eXtreme Programming

What's wrong with software today?

» Software development is risky and difficult
to manage

» Customers are often dissatisfied with the
development process

» Programmers are also dissatisfied

One Alternative: Agile
Development Methodologies

+ XP = eXtreme Programming
— It does not encourage blind hacking. It is a systematic
methodology.
— It predates Windows “XP”.

» Developed by Kent Beck
— XP is “a light-weight methodology for small to medium-sized teams
developing software in the face of vague or rapidly changing
requirements.”

» Alternative to “heavy-weight” software development

models
(which tend to avoid change and customers)

— "Extreme Programming turns the conventional software process
sideways. Rather than planning, analyzing, and designing for the
far-flung future, XP programmers do all of these activities a little
at a time throughout development.”

-- IEEE Computer , October 1999

Traditional Processes are ‘Heavy’

Cost of Change

Requirements Design Implementation Testing Maintenance

Boehm’s Curve

» To accomplish this:

— We need lots of up front planning, resulting in
“heavy” methodologies

— Every bug caught early saves money, since models
are easier to modify than code

— Large investments are made in up front analysis and
design models, because the of the cost of late error
discovery

— This leads to a waterfall mentality with BDUF (Big
Design Up Front)

» Proponents of XP argue that logic is based on
development in the 1970’s and 1980’s

What's Changed?

« Computing power has increased astronomically

* New tools have dramatically reduced the
compile/test cycle

» Used properly, OO languages make software
much easier to change

» The cost curve is significantly flattened, i.e. costs
don’t increase dramatically with time

» Up front modeling becomes a liability — some
speculative work will certainly be wrong,
especially in a business environment

Why XP Helps

» Extreme Programming is a “light” process
that creates and then exploits a flattened
cost curve

» XP is people-oriented rather than process
oriented, explicitly trying to work with
human nature rather than against it

» XP Practices flatten the cost of change
curve.

XP Cost of Change Curve

Cost of Change

-

——
-

XP cost of
change
curve

Embrace change

* In traditional software life cycle models, the cost of
changing a program rises exponentially over time

» A key assumption of XP is that the cost of changing a
program can be hold mostly constant over time

* Hence XP is a lightweight (agile) process:

— Instead of lots of documentation nailing down what customer
wants up front, XP emphasizes plenty of feedback

— Embrace change: iterate often, design and redesign, code
and test frequently, keep the customer involved

— Deliver software to the customer in short (2 week) iterations
— Eliminate defects early, thus reducing costs

Why does XP Help?

“Software development is too hard to spend time on
things that don't matter. So, what really matters?
Listening, Testing, Coding, and Designing.” - Kent Beck,
“father” of Extreme Programming

Promotes incremental development with minimal up-front
design

Results in a “pay as you go” process, rather than a high
up-front investment

Delivers highest business value first

Provides the option to cut and run through frequent
releases that are thoroughly tested

More on XP

« XP tends to use small teams, thus reducing
¢ communication costs.

« XP puts Customers and Programmers in one
place.

» XP prefers CRC cards to expensive round-trip
UML diagramming environments

» XP's practices work together in synergy, to get a
team moving as quickly as possible to deliver
value the customer wants

Successes in industry

* Chrysler Comprehensive Compensation system
— After finding significant, initial development problems, Beck and
Jeffries restarted this development using XP principles
— The payroll system pays some 10,000 monthly-paid employees
and has 2,000 classes and 30,000 methods, went into
production almost on schedule, and is still operational today
(Anderson 1998)

» Ford Motor Company VCAPS system

— Spent four unsuccessful years trying to build the Vehicle Cost
and Profit System using traditional waterfall methodology

— XP developers successfully implemented that system in less
than a year using Extreme Programming (Beck 2000).

XP Process

 Planning
— User stories are written
— Release planning creates the schedule.
— Make frequent small releases.
— The Project Velocity is measured.
— The project is divided into iterations.
— Iteration planning starts each iteration.
— Move people around.
— A stand-up meeting starts each day.

XP Process

 Designing
— Simplicity.
— Choose a system metaphor.
— Use CRC cards for design sessions.
— Create spike solutions to reduce risk.
— No functionality is added early.
— Refactor whenever and wherever possible.

XP Process

» Coding
— The customer is always available.
— Code must be written to agreed standards.
— Code the unit test first.
— All production code is pair programmed.
— Only one pair integrates code at a time.
— Integrate often.
— Use collective code ownership.
— Leave optimization until the end.
— No overtime.

XP Process

» Testing
— All code must have unit tests.

— All code must pass all unit tests before it can
be released.

— When a bug is found tests are created.

— Acceptance tests are run often and the score
is published.

Four Core Values of XP

Communication
Simplicity
Feedback
Courage

Communication

What does lack of communication do to projects?

XP emphasizes value of communication in many
of its practices:

— On-site customer, user stories, pair programming,
collective ownership (popular with open source
developers), daily standup meetings, etc.

XP employs a coach whose job is noticing when
people aren’t communicating and reintroduce
them

Simplicity

"Do the simplest thing that could possibly
work" (DTSTTCPW) principle

— Elsewhere known as KISS

A coach may say DTSTTCPW when he sees
an XP developer doing something needlessly
complicated

YAGNI principle ("You ain’t gonna need it")

How do simplicity and communication support
each other?

Feedback

Feedback at different time scales
Unit tests tell programmers status of the
system

When customers write new user stories,
programmers estimate time required to deliver
changes

Programmers produce new releases every
2-3 weeks for customers to review

How does valuing feedback turn the waterfall
model upside down?

10

Courage

» The courage to communicate and accept
feedback

» The courage to throw code away
(prototypes)

» The courage to refactor the architecture of
a system

OVER MY
TRACKST [YEAR, TVE
GOT SOME
BODIES TO

) ALL OF MY BAD DECISIONS)
» Do you have what it takes? iéo“ﬁté"ié“éé;‘iz&ﬁ{“
REORG TO €
oy

Twelve XP Practices

The Planning Game + Pair Programming

« Small Releases » Collective

» Metaphor Ownership

- Simple Design » Continuous

» Test-driven Integration
development * 40-Hours a Week

« Refactoring « On-Site Customer

» Coding Standards

The Planning Game

Customer comes up with a list of desired features for the
system

— How is this different from the usual requirements gathering?
Each feature is written out as a user story

— Describes in broad strokes what the feature requires

— Typically written in 2-3 sentences on 4x6 story cards
Developers estimate how much effort each story will
take, and how much effort the team can produce in a
given time interval (iteration)

User Stories

 Drive the creation of the acceptance tests:

— Must be one or more tests to verify that a story has

been properly implemented
+ Different than Requirements:

— Should only provide enough detail to make a
reasonably low risk estimate of how long the story will
take to implement.

« Different than Use Cases:

— Written by the Customer, not the Programmers, using
the Customer’s terminology

— More “friendly” than formal Use Cases

12

User Story Examples

A user wants access to the system, so they The user must be able to search for a book.
find a system administrator, who enters in
the user's First Name, Last Name, Middle

Initial, E-Mail Address, Username (unique),
and Phone Number.

Risk: Low Cost: 2 points Risk: High Cost: (too large!)

The user must be able to search for a book The user must be able to search for a book

by Title, and display the results as a list. by Category, and display the results as a
list.

Risk: Med. Cost: 1 point Risk: Med. Cost: 2 points

User Stories

» Project velocity = how many days can be committed to
a project per week
— Why is this important to know?

» Given developer estimates and project velocity, the
customer prioritizes which stories to implement

— Why let the customer (rather than developer) set the
priorities?

» Later we must develop acceptance tests for
each story

13

Design

* No tedious UML
« Use CRC cards

« Web example:
http://www.extremeprogramming.org/exam
ple/crcsim.html

Small and simple

« Small releases
— Start with the smallest useful feature set

— Release early and often, adding a few features
each time

— Releases can be date driven or user story driven
» Simple design
— Always use the simplest possible design that gets
the job done

— The requirements will change tomorrow, so only do
what's needed to meet today's requirements
(remember, YAGNI)

14

Test-driven development

Test first: before adding a feature, write a test for it!
— If code has no automated test case, it is assumed it does not work

When the complete test suite passes 100%, the feature is
accepted

Tests come in two basic flavors...

Unit Tests automate testing of functionality as developers
write It
— Each unit test typically tests only a single class, or a small cluster of
classes
- (Urcjt te)sts typically use a unit testing framework, such as JUnit
xUnit
— Experiments show that test-driven development reduces debugging
time
— Increases confidence that new features work, and work with
everything

— If a bug is discovered during development, add a test case to make
sure it doesn’t come back!

Test-Driven Development

» Acceptance Tests (or Functional Tests) are
specified by the customer to test that the overall
system is functioning as specified

— When all the acceptance tests pass, that user story is
considered complete

— Could be a script of user interface actions and
expected results

— Ideally acceptance tests should be automated, either
using a unit testing framework, or a separate
acceptance testing framework

15

Pair programming

» Two programmers work
together at one
machine

» Driver enters code,
while navigator
critiques it

» Periodically switch roles

* Research results:

— Pair programming increases productivity

— Higher quality code (15% fewer defects) in about half the time
(58%)

— Williams, L., Kessler, R., Cunningham, W., & Jeffries, R.

Strengthening the case for pair programming. /EEE Software,
17(83), July/August 2000

— Requires proximity in lab or work environment

Pair programming in CS classes
G

+ Experiment at NC State
— CS1— programming in Java
— Two sections, same
instructor, same exams

— 69 in solo programming
section, 44 in paired section

— Pairs assigned in labs

* Results:
— 68% of paired students got C or better vs. 45% of solo students
Paired students performed much 16-18 points better on first 2 projects

No difference on third project (perhaps because lower performing solo
students had dropped before the third project)

Midterm exam: 65.8 vs. 49.5 Final exam: 74.1 vs. 67.2
Course and instructor evaluations were higher for paired students
» Similar results at UC Santa Cruz (86 vs. 67 on programs)

16

More XP practices

 Refactoring

— Refactor out any duplicate code generated in a coding
session

— You can do this with confidence that you didn't break anything
because you have the tests
 Collective code ownership
— No single person "owns" a module
— Any developer can work on any part of the code base at any
time
« Continuous integration
— All changes are integrated into the code base at least daily
— Tests have to run 100% both before and after integration

More practices

* 40-hour work week
— Programmers go home on time
— “fresh and eager every morning, and tired and satisfied every
night”
— In crunch mode, up to one week of overtime is allowed
— More than that and there’s something wrong with the process

* On-site customer

— Development team has continuous access to a real live
customer, that is, someone who will actually be using the
system

» Coding standards
— Everyone codes to the same standards

— ldeally, you shouldn't be able to tell by looking at it who on the
team has touched a specific piece of code

17

13t XP practice:
Daily standup meeting

» Goal: Identify items to be accomplished
for the day and raise issues

- Everyone attends, iz
including the customer éfl |
* Not a discussion forum @ Zgg

« Take discussions offline |/ 4%
 Everyone gets to speak }«L’ .

« 15 minutes |' =

e Il

Kindergarten lessons

* Williams, L. and Kessler, R., “All | Really Need to
Know about Pair Programming | Learned In
Kindergarten,” Communications of the ACM (May
2000)

— Share everything. (Collective code ownership)

— Play fair. (Pair programming—navigator must not be passive)

— Don't hit people. (Give and receive feedback. Stay on track.)

— Clean up your own mess. (Unit testing.)

— Wash your hands before you eat. (Wash your hands of
skepticism: buy-in is crucial to pair programming.)

— Flush. (Test-driven development, refactoring.)

— Take a nap every afternoon. (40-hour week.)

— Be aware of wonder. (Ego-less programming, metaphor.)

18

v N
P 4 - Extreme Programming Project

Extreme Programming

Test Scanarios

Mew User Story

User Stories " !
Requirements Project Welocity Bugs

R Syt Release Latest Custormer
Archltecturalw’eyta;rzgr Release iy Version Acceptance approval . Small
Spike Plamung@\ Tests Relcases

Uncertain Confident
Estirmates Estimates

Splke Capyright 2000 1. Desvan Wells

From www.extremeprogramming.com

Spike = small program to explore potential solutions to technical or
design questions

v 1
- .
> 4 [teration
.
Extreme Programming N U Story
ew User \
Release Project Velocity
Plan _
el ES Unfiniched Tasks I
Caommunicate
Mew
Project . [teration Functionality
Next welotity Iieration Plan Devel : —aLatest
Iteration Planning cvelopment | BugFixes v yiergion
| A
Failed Acceptance *,
Test
s Day by Day
BUgS Copyright 2000 J. Doavas Wells

Zooming in on “Iteration”

19

XP emphasizes

communication
Development @Zoom Out
Learn and
Communicate
Untinished Pair Programming
Teration e N New
Plan Tasks ﬁg”D“D“UCh Share CRG Cards Functionality
Stand Up Collective Te;tg”pqé’sﬁgﬁ
Failed Acceptance Meeting Ere}!f'ta-:—lisdk Code QmerShip
TBV' Acceptance Test o Accepm
Da}: by Day Test Passed Bug Fixes
Discussion?
» Will you incorporate XP practices in your
projects?

— What does this life cycle imply relationship between
customer and team, analyst/designers and
programmers?

— Keep customer involved?

— The planning game—Iearn how to estimate effort for
small tasks?

— Embrace change? Many iterations and releases?

— Pair programming? Maintain discipline of switching
drivers?

— Junit tests before writing code?

— Stand up meetings?

20

