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Formal Specification and 
Verification

Specifications
� Imprecise specifications can cause serious 

problems downstream
� Lots of interpretations even with technical-

oriented natural language
� �The value returned is the top of the stack�

� Address on the top or its element?
� �The grace period date for payment to be printed is 

one month after the due date.�
� What if the date is January 31?

� To avoid these problems, formal specification 
methods are more precise and less amenable to 
ambiguity
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Formal Specs
� Why Formalize?

� Removes ambiguity and 
improves precision

� Can verify that requirements 
have been met

� Can reason about 
requirements and designs

� Properties can be checked 
automatically

� Test for consistency, explore 
consequences

� Help visualize specifications
� Have to become formal 

anyway to implement

� Why people don�t formalize
� Lower level than other 

techniques; too much detail 
that is not known yet

� Concentrates on consistent 
and correct models

� Many real models are 
inconsistent, incorrect, 
incomplete

� Some confusion over 
appropriate tools

� Specification vs. modeling
� Advocates get attached to 

one tool
� Formal methods requires lots 

of effort

Informal Specification

� Can partially circumvent natural language 
problems using pseudocode, flowcharts, 
UML diagrams, etc.

� Better than NLP, but still relies on natural 
language for labels, names

� Can take lots of time to draw and there is 
a tendency not to update them as software 
evolves
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Types of Formal Specs
� Model-Oriented

� Describe system�s behavior in terms of mathematical 
structures

� Map system behavior to sets, sequences, tuples, maps
� Use discrete mathematics to specify desired behavior

� Property-Oriented
� Indirectly specify the system�s behavior by stating the 

properties or constraints the system must satisfy
� Algebraic

� Data type constitutes an algebra, axioms state properties of 
operations

� Axiomatic
� Uses predicate logic for pre/post conditions

Model-Oriented Specification of a 
Stack

� Map stack operation onto a sequence, <�xi�>
� s� is  the stack value prior to invoking the function
� ~ is concatenation

� Let stack = <�xi�> where xi is an int
� Invariant 0 ≤ length(stack)
� Initially stack = null_sequence
� Function

� Push(s:stack, x:int)
� Pre  0 ≤ length(s)
� Post s = s� ~ x

� Pop(s:stack)
� Pre  0 < length(s)
� Post  s = leader(s�)

� Top(s: stack) returns x:int
� Pre 0 < length(s)
� Post x = last(s�)
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Property-Oriented Specification of 
a Stack

� Algebraic specification

� Type IntStack
� Functions

� Create: ! IntStack
� Push:IntStack × Int ! IntStack
� Pop: IntStack ! IntStack
� Top: ! Int

� Axioms
� Isempty(Create) = true
� Isempty(Push(s,i)) = false
� Pop(Create) = Create
� Pop(Push(s,i)) = s
� Top(Create) = 0
� Top(Push(s,i)) = i

Algebraic Specification of a Set
� Type: Set
� Functions

� Create ! Set
� Insert: Set × Int ! Set
� Delete: Set × Int ! Set
� Member: Set × Int ! Boolean

� Axioms
� Isempty(Create) = true
� Isempty(Insert(s,i)) = false
� Member(Create,i) = false
� Member(Insert(s,i),j) =  if (i = j) then true else member(s,j)
� Delete(Create,j) = Create
� Delete(Insert(s,j),k) = if (j = k) then delete(s,j) else 

Insert(Delete(s,k),j)
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Some Formal Specs

� VDM
� Vienna Development Method
� Was used to formally specify the syntax and 

semantics of programming languages
� Z

� Based on Zermelo-Fraenkel set theory and 
first order predicate logic

� See book for some details about VDM

Program Verification
� With algebraic and axiomatic specifications we 

may be able to formally prove that our programs 
are correct
� Start with assertions that hold before our program, 

precondition
� Execute some statement
� Results in a postcondition
� Notation:   {P} S {Q}

� {P} = Set of preconditions
� S = Statement(s) executed
� {Q} = Set of post conditions
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Motivation

� Here is a specification:
� void merge(int[] ArrA, int[] ArrB, int[] ArrC)

� Requires ArrA and ArrB to be sorted arrays of 
the same length.  C is an array that is at least 
as long as the length of ArrA + length of ArrB.  
C is a sorted array containing all elements of 
ArrA and ArrB.

Motivation
� Here is an implementation

int i = 0, j = 0, k = 0;
while (k < ArrA.length() + ArrB.length()) {

if (ArrA[i] < ArrB[j] {
ArrC[k] = ArrA[i];
i++;

}
else {

ArrC[k] = ArrB[j];
j++;

}
k++;

}

Does this program meet its specifications?
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Use Predicate Logic for Pre/Post 
Conditions

� Expressions can be true or false
� Example:

(x>y ∧ y>z) → x > z

x = y ↔ y = x

∀ x,y,z ((x>y) ∧ (y>z)) → x>z)

∀ x (∃ y (y = x + z)) ; z is unbound, x/y bound

If all variables are bound, the formula is closed

Proof Rules
� We generally work our way backward from the desired 

post-condition to find the weakest pre-condition
� Strength of Preconditions

� A Weak precondition is general; it has few constraints and is the 
least restrictive precondition that guarantees the post-condition

� True is the weakest
� A Strong precondition is specific; it has more constraints to 

guarantee the post-condition
� False is the strongest

� Example:  Which is weaker?
{ b>0}   
a=b+1   
{a>1}    

{b > 10}  
a=b+1   
{a>1}
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Program Correctness

� If we write formal specs we can prove that 
a program meets its specifications

� Program correctness only makes sense in 
relation to a specification

� To prove a program is correct:
� Prove the post-condition is true after 

executing the program assuming the pre-
condition is true

� Apply rules working backward line by line

Proof Rules
� Proof rules help us find the weakest 

preconditions for each programming construct
� Proof Rule for Assignment

� {P} x=e; {Q}
� To find {P} from {Q} the weakest precondition  is {Q} 

with all free occurrences of x replaced by e
� Proof Rule for Sequence

� {P} S1; S2; {Q}
� To find {P} from {Q} first find {R}, the weakest 

precondition for S2.  The weakest precondition for the 
sequence is then found recursively {P} S1 {R}
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Hoare Notation
� Can express proof rules using Hoare notation

� This means �if claim1 and claim2 are both proven 
true, then conclusion must be true�

� For sequence:

� For if-statement:

conclusion
claimclaim ...2,1

S2{Post} {Pre}S1;
}{Q}S2{Post ,{Pre}S1{Q}

S2{Post} else S1 then (c) {Pre}if
Post}Not(c)}S2{ ^ {Pre ,c}S1{Post} ^ {Pre

Show Precondition ! Weakest Precondition:
{Pre ∧ c → Pre-for-S1} and {Pre ∧ Not(c) → Pre-for-S2}

Proving an If Statement
{ true }
If (x > y) then

max = x;
Else

max = y;
{ (max = x ∨ max = y) ∧ (max ≥ x ∧ max ≥ y) }

The then branch:
{?}
max = x;
{ (max = x ∨ max = y) ∧ (max ≥ x ∧ max ≥ y) }

Substitute x for max backwards::

{ (x = x ∨ x = y) ∧ ( x ≥ x ∧ x ≥ y) }

{(true) ∨ x = y) ∧ (true ∧ x ≥ y) }

{(x ≥ y)}

Which is Okay since (Pre ∧ c) ! {(x ≥ y) }
{ true ∧ (x > y)} ! {( x ≥ y) }

The else branch:
{?}
max = y;
{ (max = x ∨ max = y) ∧ (max ≥ x ∧ max ≥ y) }

Substitute y for max backwards::

{ (y = x ∨ y = y) ∧ ( y ≥ x ∧ y ≥ y) }

{(y = x ∨ true)  ∧ (y ≥ x ∧ true) }

{(y ≥ x)}

Which is Okay since (Pre ∧ not c) ! {(y ≥ x) }
{ true ∧ not (x > y)} ! {( y ≥ x) }



10

Loops

� The Hoare rule for loops:

}{body )( while}{
}{}{

PccP
PbodyPc

∧¬
∧

while (c) body;

P is a loop invariant; an assertion that is true throughout the loop construct.

There is no known algorithm to find loop invariants, one must be �clever�

Loop Example

� Given the short program to sum n 
numbers:

sum = 0;
i = 0;
while (i <= n)
{

sum = sum + a[i];
i++;

}

{n > 0}
sum = 0;
i = 1;
{sum = 0  ∧∧∧∧ i = 1  ∧∧∧∧ n > 0}
{1 ≤≤≤≤ i  ∧∧∧∧ i ≤≤≤≤ (n+1)  ∧∧∧∧ sum = ∑∑∑∑(j=1,i(j=1,i(j=1,i(j=1,i----1)(a[j])}1)(a[j])}1)(a[j])}1)(a[j])}
while (i <= n)
{

sum = sum + a[i];
i++;

}
{sum = ∑(j=1,n)(a[j])}

Original Code: Insert post-conditions, loop invariant:
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Loop Example

� Can we show:
{sum = 0   ∧∧∧∧ i =1  ∧∧∧∧ n>0} !!!! {1 ≤≤≤≤ i  ∧∧∧∧ i ≤≤≤≤ (n+1)  ∧∧∧∧ sum = ∑(j=1,i-1)(a[j])}

Substitute in 0 for sum, 1 for i:
1 ≤ 1 true
1 ≤ (n+1)  true since n>0
0 = ∑(j=1,0)(a[j])   is vacuously true

So we can focus on the following: {1 ≤≤≤≤ i  ∧∧∧∧ i ≤≤≤≤ (n+1)  ∧∧∧∧ sum = ∑∑∑∑(j=1,i(j=1,i(j=1,i(j=1,i----1)(a[j])}1)(a[j])}1)(a[j])}1)(a[j])}
while (i <= n)
{

sum = sum + a[i];
i++;

}
{sum = ∑(j=1,n)(a[j])}

Loop Example

� The loop rule gives us:

{1 ≤≤≤≤ i  ∧∧∧∧ i ≤≤≤≤ (n+1)  ∧∧∧∧ sum = ∑∑∑∑(j=1,i(j=1,i(j=1,i(j=1,i----1)(a[j])}1)(a[j])}1)(a[j])}1)(a[j])}
while (i <= n)
{

sum = sum + a[i];
i++;

}
{i>n  ∧∧∧∧ 1 ≤≤≤≤ i  ∧∧∧∧ i ≤≤≤≤ (n+1)  ∧∧∧∧ sum = ∑(j=1,i-1)(a[j])}
{sum = ∑(j=1,n)(a[j])}

}{body )( while}{
}{}{

PccP
PbodyPc

∧¬
∧

This means at the end of the loop we should have:
¬c ∧ P

Which is: {i>n  ∧ 1 ≤ i  ∧ i ≤ (n+1)  ∧ sum = ∑(j=1,i-1)(a[j])}
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Loop Example

� Show end of loop:
{ i>n  ∧∧∧∧ 1 ≤≤≤≤ i  ∧∧∧∧ i ≤≤≤≤ (n+1)  ∧∧∧∧ sum = ∑(j=1,i-1)(a[j])} !!!!
{sum = ∑(j=1,n)(a[j])}

Since i > n and i ≤ n+1, then i=n+1
Sum = ∑(j=1,n+1-1)(a[j])} 

! Sum = ∑(j=1,n)(a[j])} 

This is assuming the loop rule condition holds, which we haven�t shown yet

Loop Example

� The loop rule body:
}{body )( while}{

}{}{
PccP

PbodyPc
∧¬

∧

{ i ≤≤≤≤ n  ∧∧∧∧ 1 ≤≤≤≤ i  ∧∧∧∧ i ≤≤≤≤ (n+1)  ∧∧∧∧ sum = ∑(j=1,i-1)(a[j])}
sum = sum + a[i];
i++;

{ 1 ≤≤≤≤ i  ∧∧∧∧ i ≤≤≤≤ (n+1)  ∧∧∧∧ sum = ∑(j=1,i-1)(a[j])}

Substitute backwards:

{ i ≤≤≤≤ n  ∧∧∧∧ 1 ≤≤≤≤ i  ∧∧∧∧ i ≤≤≤≤ (n+1)  ∧∧∧∧ sum = ∑(j=1,i-1)(a[j])}
{ 1 ≤≤≤≤ i+1  ∧∧∧∧ i+1 ≤≤≤≤ (n+1)  ∧∧∧∧ sum+a[i] = ∑(j=1,i)(a[j])}

sum = sum + a[i];
{ 1 ≤≤≤≤ i+1  ∧∧∧∧ i+1 ≤≤≤≤ (n+1)  ∧∧∧∧ sum = ∑(j=1,i)(a[j])}

i++;
{ 1 ≤≤≤≤ i  ∧∧∧∧ i ≤≤≤≤ (n+1)  ∧∧∧∧ sum = ∑(j=1,i-1)(a[j])}
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Loop Example

� Show entrance of loop body:
{ i ≤≤≤≤ n  ∧∧∧∧ 1 ≤≤≤≤ i  ∧∧∧∧ i ≤≤≤≤ (n+1)  ∧∧∧∧ sum = ∑(j=1,i-1)(a[j])}
!!!!
{ 1 ≤≤≤≤ i+1  ∧∧∧∧ i+1 ≤≤≤≤ (n+1)  ∧∧∧∧ sum+a[i] = ∑(j=1,i)(a[j])}

1 ≤ i+1    is true since 1 ≤ i
(i+1) ≤ (n+1) is true since we have i ≤ n

Sum+a[i] = ∑(j=1,i)(a[j])  can become  sum = ∑(j=1,i)(a[j]) � a[i]

This follows from sum = ∑(j=1,i-1)(a[j])}

We have now proven all of the pieces of the code!
We can continue in confidence it actually computes 
the sum (we should also prove the invariant)

Practicalities
� Program proofs are currently not widely used

� Tedious to construct
� Can be longer than the programs they refer to
� Can contain mistakes too
� Requires math
� Does not ensure against hardware errors, compiler errors, etc.
� Only prove functional correctness, not termination, efficiency, 

etc.
� Practical formal methods:

� Use for small parts of the program, e.g. safety-critical
� Use to reason about changes to a program
� Use with proof checking tools and theorem provers to automate
� Use to test properties of the specs
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Other Approaches
� Model-checking

� A model checker takes a state-machine model and a temporal logic property 
and tells you whether the property holds in the model

� temporal logic adds modal operators to propositional logic:
� e.g.  □ x x is true now and always (in the future)
� e.g.  ◊ x x is true eventually (in the future)

� The model may be:
� of the program itself (each statement is a �state�)
� an abstraction of the program
� a model of the specification
� a model of the domain

� Model checking works by searching all the paths through the state 
space
� with AI techniques for reducing the size of the search

� Model checking does not guarantee correctness
� it only tells you about the properties you ask about
� it may not be able to search the entire state space (too big!)
� but is (generally) more practical than proofs of correctness.


