
1

Software Maintenance

Chapter 14

Software Maintenance

• Your system is developed…
– It is deployed to customers…

• What next?

• Maintenance
– Categories of maintenance tasks
– Major causes of problems
– Reverse engineering
– Management of maintenance activities

2

IEEE Definition
• Maintenance is

– The process of modifying a software system or
component after delivery to correct faults, improve
performance or other attributes, or adapt to a changed
environment.

– More than fixing bugs!

• Estimates:
– More than 100 billion lines of code in production in the

world
– As much as 80% is unstructured, patched, and badly

documented
– Try a monster.com search on “COBOL”

Maintenance Activities
• Corrective

– Repair of faults that are discovered
• Adaptive

– Modify software to changes in the environment, e.g.
new hardware, new OS.

– No change in functionality.
• Perfective

– Accommodate new or changed user requirements.
– Changes in functionality.

• Preventive
– Activities aimed at increasing maintainability, e.g.

documentation, code arrangement.

3

% Effort

4%

25%

50%

21%

Perfective
Adaptive
Preventive
Corrective

• Maintenance is also 50% of the total lifecycle costs
• Hasn’t changed over the last twenty years – evolution inevitable!

Addressing Maintenance

• Higher quality code, better test
procedures, better documentation,
adherence to standards and conventions

• Design for change
• Prototyping and fine-tuning to user needs

can help reduce perfective maintenance
• Write less code

– Reuse

4

Major Causes of Maintenance
• Anecdote by David Parnas on re-engineering software

for fighter planes
– Plane has two altimeters
– Onboard software tries to read either meter and display the

result
– Code, can be deciphered with a little effort:

IF not-read1(V1) GOTO DEF1;
display(V1);
GOTO C;
DEF1: IF not-read2(V2) GOTO DEF2;
display(V2);
GOTO C;
DEF2: display(3000);
C:

Better, Structured Version

• But why the number 3000?
• Magic Number

If read-meter1(V1) then
display(V1)

else if read-meter2(V2) then
display(V2)

else
display(3000);

endif

5

Parnas Anecdote

• 3000:
– Programmer asked fighter pilots what average flying

altitude was, used that in case neither altimeter was
readable

• Re-engineering
– Plane flies high or low, not at average very often,

wanted to re-write the code to display a warning
instead, e.g. “PULL UP”

– Denied since pilots were trained to react to the default
message, even put in the manual: “If altimeter reads
3000 for more than a second, pull up”

Parnas Anecdote

• Illustrates major causes of maintenance
problems
– Unstructured Code
– Maintenance programmer has insufficient

knowledge of the system or application domain
– Documentation absent, out of date, or

insufficient
• One other:

– Maintenance has a bad image

6

Laws of Software Evolution
• The laws of software evolution also force

maintenance to occur
• Law of increasing complexity

– A program that is changed becomes less and less
structured and thus becomes more complex. One
has to invest extra effort in order to avoid the increase
in entropy.

• Law of continuing change
– A system that is being used undergoes continuing

change, until it is judged more cost-effective to
restructure the system or replace it by a completely
new version

Scant Knowledge Available

• Maintenance programmers generally lack
detailed knowledge about the system or
application domain
– Problem in general, but worse for maintenance
– Often scarce sources available to reference
– Usually requires going to the source code to figure

out how the system works
– Experienced programmers have learned to distrust

documentation, usually insufficient and out of date
• When a quick-fix is done, the documentation is often not

updated to reflect changes

7

Limited Understanding

• Pfleeger:
– 47% of software maintenance effort devoted

to understanding the software
• E.g. if there are n modules and we change k of

them, for each changed module we need to know
possible interactions with the other n-1 modules

– >50% of effort can be attributed to lack of user
understanding

• Incomplete or mistaken reports of errors and
enhancements

Common knowledge problems
• A design rationale is often missing

– Why 3000?
– Programmers tend to document how the code works,

not the rationale behind the decisions for the code
– Maintenance programmers must reconstruct the

decisions and may do so incorrectly
• Maintenance Programming in Opportunistic

Mode
– Maintenance programmers abstract a structure out of

the code based on stereotypical solutions to problems
– If these assumptions are incorrect, the programmer

may encounter further problems

8

Negativity

• Maintenance sometimes considered
second-rate job
– Goes to inexperienced, one gets promoted to

development
– Generally lower salary
– Affects morale, try to change jobs, high

turnover
– But maintenance actually requires

programmers with the most experience
• Less documentation, often more time pressures,

bulk of the lifecycle

Reverse Engineering
• The process of analyzing a system to

– Identify the system’s components and interrelationships
– Create representations of the system in another form or at a

higher level of abstraction
• Akin to the reconstruction of a lost blueprint
• Redocumentation

– Derive a semantically equivalent description at the same level of
abstraction, e.g. change formatting, coding standards, flowcharts

• Design Recovery
– Derive a semantically equivalent description at a higher level of

abstraction, e.g. derive UML diagram from source code
– Some tools available to help do this, e.g. Rational Rose

9

Restructuring vs. Reengineering
• Restructuring

– Transformation of a system from one representation
to another at the same level of abstraction

– Functionality of system does not change
– Revamping: UI is modernized, spaghetti-like code

organized into objects
• Reengineering or Renovation

– Real changes made to the system in terms of
functions

– Often followed by a traditional forward engineering
requirements phase

Maintenance Mindset

• Maintenance programmers study the original
program code one and a hafl times as long as its
documentation

• Maintenance programmers spend as much time
reading the code as they do implementing a
change

• Result of the source code being the only truly
reliable source of information

• How does the programmer study the source?

10

Maintenance Mindset
• Programming plan

– A program fragment that corresponds to a stereotypical action
– E.g. loop to sum a series of numbers, process all elements in an

array
• Beacon

– A key feature that indicates the presence of a particular structure
or operation

– E.g.
• temp = x[i];
• x[i]=x[j];
• x[j]=temp;

• If the beacons or plan inherent in the code don’t
correspond to the actual design, the maintenance
programmer is in for a tough time

Maintenance Strategies

• As-Needed
– To maintain a feature, the programmer goes directly

to the code for that feature, hypotheses formulated on
the basis of local information

• Systematic
– An overall understanding of the system is formed by a

systematic top-down study of the program text.
– Gives better insight into causal relationships between

program components than As-Needed, can better
avoid ripple effects

11

Code Example

• What does the following do?

boolean A[][];
…

for i:=1 to n do
for j:=1 to n do

if A[j][i] then
for k:=1 to n do

if A[i][k] thenA[j][k]:=true
endfor

endif
endfor

endfor

Second Example
• Mostly incomprehensible code fragment

Procedure A(var x:w)
begin

b(y,n1);
b(x,n2);
m(w[x]);
y:=x;
r(p[x])

end;

Procedure A(var nw: window)
begin

border(current_win, HIGHLIGHT);
border(nw,HIGHLIGHT);
move_cursor(w[nw]);
current_win:=nw;
resume(process[nw]);

end;

12

Maintenance Organization
• Two approaches to maintenance
• Throw it over the wall approach

– A new team is responsible for maintenance
– Advantages

• Clear accountability to separate cost and effort for maintenance from new
development investment

• Intermittent and unpredictable demands on maintenance make it hard for
people to do both

• Separation motivates development team to clean up the code before handoff
• Team can become more specialized on maintenance, service-orientation as

opposed to product-orientation, can increase maintenance productivity
– Disadvantages

• Investment in knowledge and experience is lost
• Coordination efforts take time
• Maintenance becomes a reverse engineering challenge
• De-motivation due to status differences
• Possible duplication of communication to users

Maintenance Organization

• Mission orientation
– Development team make a long term

commitment to maintaining the software
– Reverse advantages/disadvantages of a

separate organization for maintenance
• Which to use?

– Most express slight preference for separate
organization units, with careful procedures to
mitigate the disadvantages

13

Service Perspective to Software
Maintenance

• Survey of aspects of software quality customers
consider most important:
– Service responsiveness
– Service capacity
– Product reliability
– Service efficiency
– Product functionality

• Maintenance often can be seen as providing a
service to end users as opposed to delivering a
product

• Should judge maintenance quality differently
from development

Services vs. Products
• Services are

– Intangible
– Depends on factors difficult to control

• Ability of customers to articulate needs
• Willingness of personnel to satisfy needs
• Level of demand for service

– Produced and consumed simultaneously
• Centralization and mass production difficult

– Perishable
• Product vs. Service not clear cut

Pure
Product

Pure
Service

Packaged
Food

Computer
Dealer

Fast
Food

Airlines Babysitting

14

Software Product/Service

• Continuum for software development and
maintenance

Pure
Product

Pure
Service

Shrink
Wrap
Software

Custom
SW Dev

Adaptive
Maintenance

Corrective
Maintenance

Software
Operation

Gap Model

• Used to illustrate differences between perceived
service delivery and expected services

• Gap 1
– Expected service perceived by the service provider

differs from the service expected by the customer
– Often caused by service provider focusing on

something different than the customer wants, e.g. on
features instead of maximum availability

– Customer service expectations should be translated
into clear service agreements

15

Gap Model
• Gap 2

– Service specification differs from the expected service as
perceived by the service provider.

– E.g. customer expects a quick restart of system in the event of a
crash, but service provider is focused on analyzing the reasons

– Would hopefully be caught in a review of service requirements
• Gap 3

– Actual service delivery differs from specified services.
– Often caused by deficiencies in human resource policies, failure to

match demand and supply, customers not filling their role.
– E.g. not tracking bugs adequately, insufficient staff, customers

bypassing help desk to programmers

Gap Model

• Gap 4
– Communication about the service does not

match the actual service delivery.
– Ineffective management of customer

expectations, promising too much, or
ineffective horizontal communications.

– E.g. customer not updated on reported bugs
– Can address with bug tracking, helpdesk

tools, proper managerial mindset of a
customer/service orientation

16

IEEE 1219
• Process for controlling maintenance changes

– Identify and classify change requests
• Each CR is given an tracking ID, classified into a

maintenance category
• Analyzed to see if it will be accepted, rejected, further

evaluation
• Cost estimate
• Prioritized

– Analysis of change requests
• Decision made which CR’s to address based on cost,

schedule, etc.
– Implement the change

• Design, implementation, testing of the change with
corresponding new documentation

Reality: Quick-Fix Model
• As changes are needed, you take the source

code, make the changes, and recompile to get a
new version
– Quick and cheap now, but rapidly degrades the

structure of the software as patches are made upon
patches

– Should at least update docs and higher-level designs
after code fixed, but often this is left out, and only
done as time permits

– Should only be done for emergency fixes
• Non emergency situations

– Planned releases with new versions, change log

17

Other Models
• Iterative enhancement model

– Changes made based on an analysis of the existing
system

– Start with highest level document affected by
changes, propagate the change down through the
remaining documents and code

– Attempts to control complexity and maintain good
design

• Full-reuse model
– Starts with requirements for the new system, reusing

as much as possible
– Needs a mature reuse culture to be successful

Quality Issues
• Software quality affects maintenance effort
• Should use measurement techniques

previously discussed to ensure good quality
• Observed trends:

– Studies have found correlations to complexity
metrics like Cyclomatic complexity to
maintenance efforts

– If certain modules require frequent change or
much effort to realize change, a redesign should
be given serious consideration

18

Redesign
• When to redesign and reengineer the entire system?
• The more of the following you have, the greater the

potential for redesign
– Frequent system failures
– Code over seven years old
– Overly-complex program structure and logic flow
– Code written for previous generation hardware
– Very large modules
– Excessive resource requirements
– Hard-coded parameters
– Difficult keeping maintenance personnel
– Deficient documentation
– Missing or incomplete design specs

Summary
• Maintenance activities made up of

– Corrective
– Adaptive
– Perfective
– Preventive

• Most work spent in Perfective maintenance
• Software evolution makes maintenance inescapable
• Problems can be mitigated by avoiding poor

documentation, unstructured code, insufficient
knowledge about the system or design for the
maintenance programmers

• Maintenance requires a service mentality

