Mapping Models to Code

Mapping Models to Code

« We will skip most of this chapter

— It deals with how to go from UML class diagrams to
actual code
- \Lou should already have a pretty good idea how to do
this
» Would be trickier if using a language that doesn’t support OOP
for example
* Overview

— Mappings are transformations that aim at improving
one aspect of the model while preserving functionality.
Activities:

» Optimization

 Realizing associations

» Contracts to exceptions

+ Class models to storage schema

Transformations

Forward engineering =g

) Refactoring

Model space Source code space

Model
transformation

Reverse engineering

Model Transformation Example

Object design model before transformation

LeagueOwner Advertiser Player
+email:Address| |+email:Address/| +email:Addregs
Object design model %
after transformation: User
+email:Address
/\

LeagueOwner Advertiser Player

Refactoring Example: Pull Up
Field

public class Player {
private String email;
//..

3

public class LeagueOwner {
private String eMail;
//..

}

public class Advertiser {

private String
email_address;

/]

public class User {
private String email;

}

public class Player extends
User {

/..
}

public class LeagueOwner
extends User {

[/
}

public class Advertiser
extends User {

/]

Retfactoring Example: Pull Up
Constructor Body

public class User {
private String email;

public class Player extends User

public Player(String email) {
this.email = email;

}
pubaic f1ass LeagueOwner extends
ser
gg?}?s &eagueOwner(String
this.email = email;

}

ublic c s Advertiser
P exten gﬁserf

%21?5 ?dvertiser(String

this.email = email;

public class User {
public User(String email) {
this.email = email;

public class Player extends User {
public Player(String email) {
super(email);

}
public class LeagueOwner extends
User { .
3%2115 %eagueOwner(Str1ng
super(email);
}
pubaic c}ass Advertiser extends
ser
ublic Advertiser(String email)
super(email);

Forward Engineering Example

Object design model before transformation
d

User K LeagueOwner
Temail:String +maxNumlLeaques:int
+notify(msg:String)

Source code after transformation *

public class User { public class LeagueOwner extends

private String email; User {
public String getEmail() { private int maxNumLeagues;
} return email; public int getMaxNumLeagues() {
public void setEmail(String value){ return maxNumLeagues;
email = value; }

! . .
public void notify(String msg) { public void setMaxNumLeagues
/] ... (int value) {
maxNumLeagues = value;
/* Other methods omitted */ } X 9
}
/* Other methods omitted */

Transformation Principles

- Each transformation must address a single
criteria
— Transformation should focus on a single design goal
and not try to optimize multiple criteria (can lead to
errors)
» Each transformation must be local
— A transformation should change only a few methods
or classes at once

— If an interface changes then the client classes should
be changed now too (keep older method around for
background compatibility testing)

— If you are changing many subsystems at once you
are performing an architectural change

Transformation Principles

» Each transformation must be applied in isolation
to other changes
— To localize changes transformations should be
applied one at a time
— E.qg. if improving performance of a method, don’t add
new functionality at the same time
« Each transformation must be followed by a
validation step
— Validate the changes for errors
— Update appropriate UML diagrams
— Write new test cases to exercise new source code

