
1

Requirements Analysis

Chapter 5

Overview of Analysis

• Producing an analysis model of the 
system
– Correct
– Complete
– Consistent
– Verifiable

���������

	
����
���
�
���

�
�	
����
���
���
��������

���������
�����
�
���

���
��������
���������
�

���������
���

���
��������

����������
���

�����	�����
�

�������������

�������������



2

Analysis Model

��������
�
�����
���

�������
�
�����
���


�����
�
�����
���

	
����
���
�
�����
���


�������
������������

�����
������������

����������
������������

���
����
������������

Analysis Classes

• Should represent user-level concepts, not 
actual software classes or components
– E.g. no Database, Network, Session classes

��� �����!���

!���"
��

#
����
�

!���"
��$�������

%&�#
���
�

����'�

Software classes that should not be represented
in the analysis object model.

Domain concepts that should be represented
in the analysis object model.

Refers to how time zones 
are stored (design 
decision).

Denotes to how location is 
measured (design 
decision).

Refers to an internal
mechanism for identifying
users (design decision)



3

Entity, Boundary, Control Objects

• Entity objects
– Represent persistent information tracked by the system

• Boundary objects
– Represent the interactions between actors and the system

• Control objects
– Represent the system that manages and controls a use case, 

tying information together

• Three object approach
– Leads to models resilient to change; the interface (boundary 

objects) is more likely to change than basic functionality (control 
and entity objects)

Analysis Classes for Two Button 
Watch

((������))
*���

((������))
�
���

((������))
$��

((�
���
�))
+�����$���+
���
�

((�

�����))
#+$$������,

�����

((�

�����))
,
��
�,

�����

<<Meta-Data>>  - angle brackets store meta-data



4

Analysis Activities
• Identify entity objects
• Identify boundary objects
• Identify control objects
• Map use cases to objects with sequence diagrams
• Identify associations
• Identify aggregates
• Identify attributes
• Model state-dependent behavior
• Model inheritance relationships
• Review the analysis model

Identifying Entity Objects

• Challenge is to extract entity objects out of a use 
case

• Entity objects represent persistent information 
tracked by the system

• Heuristics
– Terms used to understand the use case
– Recurring nouns (e.g. Incident)
– Real-world entities (e.g. FieldOfficer)
– Real-world activities (e.g. EmergencyPlan)
– Data sources or sinks (e.g. Printer)



5

ReportEmergency Use Case
• Entry condition

– 1.  The FieldOfficer activates the “Report Emergency” function of her 
terminal.

• Flow of Events
– 2.  FRIEND responds by presenting a form that includes the 

emergency type menu, location, incident description, resource 
request.

– 3.  The FieldOfficer completes the form and submits the form by 
pressing the “Send Report” button, at which point the Dispatcher is 
notified.

– 4.  The Dispatcher reviews the information submitted by the 
FieldOfficer and creates an Incident in the database by invoking the 
OpenIncident use case. The Dispatcher selects a response which 
may include allocating resources with the AllocateResources use 
case and acknowledges the report by sending an acknowledgement 
to the FieldOfficer.

• Exit Condition
– 5.  The FieldOfficer receives the acknowledgment.

Entity Objects for the 
ReportEmergency Use Case

• Dispatcher
– Police officer who manages incidents.  A dispatcher opens, 

documents, and closes incidents in response to EmergencyReports
with FieldOfficers.  Dispatchers are identified by batch numbers.

• EmergencyReport
– Initial report about an Incident from a FieldOfficer to a Dispatcher.  

An EmergencyReport is composed of an emergency level, a type, a 
location, description, and resource request.

• FieldOfficer
– Police or fire officer on duty.  FieldOfficers are identified by badge 

numbers.
• Incident

– Situation requiring attention from a FieldOfficer.  An Incident may 
be reported in the system by a FieldOfficer or anybody else 
external to the system.  An Incident is composed of a description, 
response, status, location, and a number of FieldOfficers.



6

Identifying Boundary Objects
• Boundary objects represent the system interface with the 

actors.
• Heuristics

– User interface controls that the user uses to initiate the use case 
(e.g. Buttons)

– Identify forms the users need to enter data
– Identify notices and messages the system uses to respond to the 

user
– When multiple actors are involved, identify actor terminals to refer 

to the user interface under consideration
– Do not model the visual aspects of the interface with boundary 

objects (user mock-ups better)
– Always use the end user’s terms for describing interfaces

Boundary Objects for the 
ReportEmergency Use Case

• AcknowledgmentNotice
– Notice used for displaying the Dispatcher’s ack to the FieldOfficer

• DispatcherStation
– Computer used by the Dispatcher

• ReportEmergencyButton
– Button used by a FieldOfficer to initiate the ReportEmergency use case

• EmergencyReportForm
– Form used for the input of the ReportEmergency.  The form contains fields 

for specifying all attributes of an emergency report and has a button for 
submitting the form.

• FieldOfficerStation
– Mobile computer used by the FieldOfficer

• IncidentForm
– Form used for the creation of Incidents.  Presented to the Dispatcher and 

used to allocate resources and acknowledge the FieldOfficer’s report.
– Note that this form is not explicitly mentioned in the use case



7

Identifying Control Objects

• Responsible for coordinating boundary 
and entity objects
– Sequencing of forms or dispatching 

information
• Heuristics

– Identify one control object per actor in the use 
case

– Lifespan of a control object should cover the 
extent of the use case or the extent of a user 
session

Control Objects for the 
ReportEmergency Use Case

• ReportEmergencyControl
– Manages the ReportEmergency reporting function on the 

FieldOfficerStation.  This object is created when the FieldOfficer
selects the “Report Emergency” button.  It then creates an 
EmergencyReportForm and presents it to the FieldOfficer, 
collects the information, sends it to the Dispatcher, and displays 
the acknowledgment.

• ManageEmergencyControl
– Manages the ReportEmergency reporting function on the 

DispatcherStation.  Created when an EmergencyReport is 
received.  It creates an IncidentForm, displays it to the 
Dispatcher, and forwards the acknowledgment to the 
FieldOfficerStation.



8

Mapping Use Cases to Objects 
with Sequence Diagram

• Sequence diagram shows how the 
behavior of a use case is distributed 
among its participating objects.

• Basic components of sequence diagrams 
already covered

Sequence diagram for the 
���
��-�������� use case.

.�����		����

���
��

-��������,
��
�

���
��-��������
+
���
�

���
��-��������

.
��

-��������

���
��

������

-��������+
���
�

�����/0

1������2

1������2

�
����/0

	���+
������/0

�
�������
��/0

�
�������
��!
$���������/0

1������2

1�����
�2



9

Sequence diagram for the 
���
��-�������� use case 
(continued from previous)

'�������.
��

'�������

��3�
���������

������'�������/0

�
����/0

������
-��������+
���
�

�
�������
��!
$���������/0

1������2

1������2

1������2

1�����
�2

$���������

Sequence diagram for the 
���
��-�������� use case 
(continued from previous).

.�����		����
���
��-��������

+
���
�

��3�
���������

4
����

������

-��������+
���
�

�������/0

��3�
���������
��/0

1������2

������
��!��������
�/0

1�����
�2
1�����
�2



10

What’s in an Acknowledgment 
Notice?

• By completing the analysis, we can find weaknesses in 
the use case.  In this example, it is not complete in terms 
of what is inside an acknowledgment

– 4.  The Dispatcher reviews the information submitted by the 
FieldOfficer and creates an Incident in the database by invoking 
the OpenIncident use case. The Dispatcher selects a response 
which may include allocating resources with the 
AllocateResources use case and acknowledges the report by 
sending an acknowledgement to the FieldOfficer.  The 
acknowledgment indicates that the EmergencyReport was 
received, an Incident created, and what resources were 
allocated along with their estimated arrival time.

Identifying Associations

• Associations show the relationship among 
classes

• Heuristics
– Examine verb phrases
– Name associations and roles precisely
– Use qualifiers to identify namespaces and key 

attributes
– Eliminate any association that can be derived from 

other associations
– Do not worry about multiplicity until the set of 

associations is stable
– Too many associations make a model unreadable



11

Associations for FieldOfficer, 
EmergencyReport, Incident

• Are these good associations?

5 6������
�
��
� �
�
����

6

66

6

�����������
���

.�����		���� -�����������
��

'�������

Identifying Aggregates

• Whole-part relationships
• Heuristics

– Look for whole-part relationships �

• If you’re not sure that the association is 
whole-part, it is better to model it as a one-
to-many association and revisit it later 
when you have a better understanding of 
the domain



12

Sample Aggregates

�����

+

���

!
������

.��������
�

.���.������

.���-�����

#���+��

���
�����

Identifying Attributes

• Attributes are properties of individual objects
• Heuristics

– Examine possessive phrases
– Represent stored state as an attribute of the entity 

object
– Describe each attribute
– Do not represent an attribute as an object; use an 

association instead
– Do not waste time describing fine details until the 

object structure is stable



13

Attributes of the EmergencyReport
class

-�����������
��

���������!����7	���8���		��8
����9
�
����
��������
���������
��������

Modeling State-Dependent 
Behavior of Objects

• Sequence diagrams are used to identify 
operations from the perspective of a use 
case

• Statechart diagrams represent behavior 
better from the perspective of a single 
object

• Basic components of statecharts
previously discussed



14

UML Statechart for Incident

���� �

'����� � +�
��� ����� ��

����

����������)�6��:

���

����
�
�����������
���

���
���� ����������

$����������������
���

	�����
		����
���� ���
������

	�����
		����
������������

����

����������
���
���������

����

	�����
		��������
����
������
�������

����

�������

����
�����
�����

Modeling Inheritance Relationships

• Generalization helps eliminate redundancy
• Introduce a base or abstract class
• Heuristics

– Look for similarities among classes
– Look for classes that share the same 

attributes

.�����		���� $���������

������������	

�����4
�����'������



15

Reviewing the Analysis Model

• The analysis model is seldom correct or 
complete on the first pass!  Several 
iterations with the client and user likely 
necessary

• The model is stable when the number of 
changes to the model are minimal
– Reviewed by developers first, then jointly by 

developers and the client
– Goal is to ensure specification is correct, 

complete, consistent, and unambiguous

Sample Questions from 5.4.11
• Correctness

– Is the glossary of entity objects understandable by the user?
– Are all error cases described and handled?

• Complete
– For each object:  In which case is it created?  Modified?  

Destroyed?  Can it be accessed from a boundary object?
– For each attribute:  What is its type?  Qualifier?

• Consistent
– Are there multiple classes or use cases with the same name?
– Are there objects with similar attributes that are not in the same 

generalization hierarchy?
• Realistic

– Any novel features in the system?  Studies to ensure feasibility?
– Can performance and reliability requirements be met?



16

�� ���
�
���

+
��
������
�
���

$�	���
���������
��

$�	���
���
�����
��

$�	���
������
���

$�	���
�
���� ���
���� �
�

$�	���

��������

$�	���
�������������


������

$�	���
�

�����

������

$�	���
�
���
�

������

$�	���
������

������

Managing Analysis
• Elicitation and analysis activities should be documented in 

the Requirements Analysis Document
– This includes the object models and dynamic models

• Assign responsibilities
– Analyst

• Application domain experts; may have individuals for different use 
cases

– Architect
• Unifies use case and object models from a system perspective

– Document editor
• Low-level integration of the document and formatting

– Configuration manager
• Maintain revision history of document; use computer tools

– Reviewer
• Validates the RAD for correctness, completeness, consistency, clarity



17

Managing Analysis
• Communicating Analysis

– Define clear territories
– Define clear objectives and success criteria
– Brainstorm

• Iterating over the Analysis Model
– Brainstorming
– Solidification
– Maturity

• Client Sign-Off
– Represents acceptance of the analysis model by the client
– Also agree on

• List of priorities, revision process, list of criteria that will be used to 
accept or reject the system, schedule and budget

– Prioritization of functions


