User Interface Design

Part 1

User Interfaces

- "Today, user needs are recognized to be important in designing interactive computer systems, but as recently as 1980, they received little emphasis." J. Grudin
- "We can't worry about these user interface issues now. We haven't even gotten this thing to work yet!" Mulligan

UI

- The User Interface today is often one of the most critical factors regarding the success or failure of a computer system
- · Good UI design:
 - Increases efficiency
 - Improves productivity
 - Reduces errors
 - Reduces training
 - Improves acceptance
- Approach: The UI is the system
- Things to consider
 - Technical issues in creating the UI
 - User's mental model
 - Conceptual model

Where is the UI?

- Seeheim Model
 - Describes the UI as the outer layer of the system
 - Agent responsible for interaction between the user and application
 - Consists of two sub-layers
 - Presentation
 - Perceptible aspects including screen design, keyboard layout
 - Dialog
 - Syntax of interaction including meta-communication (e.g. help)
 - Might include a natural language component

Seeheim Model

- Advantages
 - Could use the same outer layer for different applications
 - E.g. same look and feel for different products
 - Single application could be implemented with different outer layers
 - E.g. for different platforms, PDA, speech, etc.
- Assumed changes are likely to occure in the interface while the application remains largely unaffected

MVC

- Model-View-Controller discussed previously
 - Similar advantages to Seeheim model

Human Factors in HCI

- Relevant disciplines
 - Humanities
 - Psychological approaches to how people remember, think, feel
 - E.g., don't require user to remember more than 7 items at a time
 - Arts
 - Graphic arts, impact of layout, colors, spatial arrangement
 - Increasingly includes sound, music, animation, aspects of cinematography
 - Cognitive Ergonomics
 - · Methods to allow humans to adapt to software artifacts
 - Try to adapt software to the task, not user to the software

Role of Models

- Models represent relevant characteristics of a part of reality that we need to understand
- But models are abstract
- Internal Models
 - Models for "execution". Used by an agent to make decisions.
 - If a human is the agent, this is a mental model
 - If a machine is the agent, this is a program or knowledge system
- External Models
 - Models for communication.
 - Represent some formalism of the domain, e.g. automata or structure charts or UML diagrams
- Some models could be both, e.g. task knowledge models
 - E.g. knowledge about the work domain

Model of Human Information **Processing**

- Example of an external model
- Human Input is considered to proceed through a number of phases
 - Edge detection
 - Unstructured information structured into sketch
 - Gestalt formation
 - Small number of understandable structures formed, e.g. triangle or phoneme
 - Combination
 - Gestalts combined into groups of segments that belong together, e.g. phonemes to a word
 - Recognition
 - Segments recognized semantically, e.g. a word's meaning, a picture of a tree
- Whole process takes less than a second and less automatic down the chain
 - Familiar stimulus is processed faster
 - So we may design our system or train our users for important signals

Model of Human Information **Processing**

- Human Output
 - Movement
 - Gestures, sounds, manipulations of tools
 - Human "CPU" decides on the meaning of the output, but leaves execution to motor processes that are running "unattended"
- Only in cases of problems is attention needed
 - E.g. location to click is awkward, can't hear own voice in a spoken command
 - Limited capacity for simultaneous processing

Working Memory

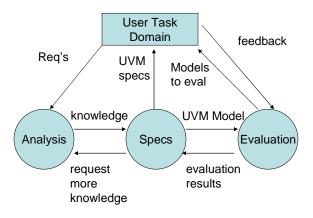
- Modern psychology presumes separation from current-term and long-term memory
 - Current memory consists of 5-9 activated elements from long term memory
 - Chunking: 85884 to one chunk instead of five
 - Long-term memory is highly structured
 - Indexed by current memory at time of activation
 - Also part-of, member-of, generalization relationships between objects

Mental Models of Information Systems

- Planning the use of the technology
 - Users will apply their mental model to find out for what part of their task the system could be used and the conditions for use
- Execution of a task with a system
 - Continuous need for fine-tuning of user actions toward system events
- System has performed some task and produced output
 - The user must evaluate the results using their mental model, translate to the goals and needs of the user
- Multiple processes
 - User must cope with unexpected system events and interpret the system's behavior in relation to the intended task
 - E.g. accept slow response to query due to network congestion

Mental Models

- Just models abstract aspects the user considers to be relevant and usable
- General characteristics:
 - Incomplete
 - Users generally aware that they do not really know all details of the system
 - They can only partly be "run"
 - May know how to express search/replace start and end situations, but not how the effect is obtained
 - They are unstable
 - · Changes over time from user experiences
 - They have vague boundaries
 - · People mix models, e.g. app with OS with network
 - They are parsimonious
 - · People like models that are not too complicated
 - Elements of superstition for situations they do not really understand
 - E.g. manually park the hard drive prior to shutdown
- All of these characteristics can be used to help assess a UI


Design of Interactive Systems

- User Interface concept: UVM User's Virtual Machine
 - UVM includes the user and all systems that the user touches for the application
 - E.g. Networking, remote sources of data and computing
 - In considering a web browser, it is relevant to understand the network, caching, refreshing, reloading, etc. in terms of data and time
 - Newer applications include collaboration and groupware

Process Model for UI Design

- The book proposes a cyclical process devoted to analysis, specifications, and evaluation
- Analysis
 - Task analysis
 - · Model task situation for a single user, Task 1
 - Use ethnography, psychological knowledge, validity analysis
 - Alternate ways to perform tasks may be considered
 - Model task domain for multiple users, Task 2
 - Specifications, negotiation, compromises, constraints, feedback
- Specification
 - Specs based on task model, includes cooperation technology and user-relevant system structures and network
- Evaluation
 - Design decisions made, guidelines and standards should be considered. Prototyping might be considered.

Process Model for UI Design

Design as Multi-Disciplinary Collaboration

- Take into account individual users, clients, structure and organization of the group for the system
 - Must know individuals' knowledge, group knowledge and dynamics
- Example: bank setting
 - Client and employee on different sides of a counter, client doesn't know what clerk is doing on the screen
 - More service-oriented if the client and clerk look at the screen together?
- Detailed design decisions
 - An early evaluation needs to include analytical methods
 - Formal evaluation
 - · Cognitive walkthroughs
 - · Usability testing
 - Users in different roles
 - Ethnography, Focus, Interviews