
10/14/2008

1

Video Game AI

Video Game AI

• Classical Games

– Focus on optimal players using computationally

expensive search techniques

• Video Game AI

– Refers to games such as First Person Shooters, Real

Time Strategy, Role Playing, Action/Arcade Games

– Differs greatly from classical AI since relatively little

CPU available for the AI

• Focus on believable characters, behaviors

• Rarely rises above the level of finite state machines

10/14/2008

2

Video Game Industry

January, 2008

Video Game AI

• Growing area for research
– E.g. Doom AI players

– Starting to see AI game engines

– Several research efforts in believable characters

• Most video games though use simple algorithms to reduce
the CPU load
– Some techniques

• Movement and Path Finding

• Reasoning

• State Machines

• Layered Architecture

• Team AI

• Planning

10/14/2008

3

Movement and Path Finding

• Many games require the AI to go from point A

to point B

– Generally multiple paths, obstacles, scenarios

• Easy enough – we already covered A*

– Optimal compared to DFS and BFS

– Convert problem into a graph and run A*,

problem solved?

Simple Solution to Pathfinding

• Reduce map to a graph with fewer edges, only

along select routes, to simplify the problem

A B

C D

EF

G

If player within the rectangle then position is simply referenced as the rectangle

Assume global knowledge of the game board

10/14/2008

4

Movement Strategies

• Can encode attack/defense strategies using a

simple lookup table on the simple graph

• Offense

– If healthy use the attack strategy

• Defense

– If not healthy take the defensive strategy

Offensive Lookup Table

A B C D E F G

A B C D D C C

B A C D D C C

C A B D D G G

D A B C E E C

E D D F D F F

F G E G E E G

G C C C C F F

AI

Human

A B

C D

EF

G

10/14/2008

5

Defensive Lookup Table

A B C D E F G

A B C D C B B

B D D G C A

C D G D G A B D

D E E E E A B B

E F F D D D

F E G E G G E E

G F F C C C

AI

Human

A B

C D

EF

G

Lookup Table Strategy

• Provides for reactive behaviors

– AI reacts to the movement of the player

• Stateless

– No state kept between lookups

– AI simply uses its position and the players position
to determine the next move

– Fast, efficient, no search required

– Can add unpredictability by randomly selecting
moves with some probability

10/14/2008

6

Scaling Up

• For large environments, can make a map of

maps

A B

C D

EF

G
Master Map

Faron

Woods

Hyrule

Castle
Snowpeak

Ruins

Lookup Table Problems

• Tends to fall apart if the environment changes

over time

• Can sometimes result in bizarre behavior at

the thresholds between zones and because of

the vast simplification

• Video example: http://www.ai-blog.net/

– Direct link:

http://www.youtube.com/watch?v=lw9G-8gL5o0

10/14/2008

7

Agent Behavior and Environment

• AI’s behavior ultimately grounded in the environment
– Environment may change, AI should reason about the

environment to perform some action, affecting
environment

– Closed loop of reasoning

Internal State

Reason

Perceive Act

Environment

Behavior

Basic Reasoning Abilities – State

Machines

• Perhaps simplest and most common is the state
machine; example with 3 mental states for a sentry
guarding two locations

March to

Location X
Attack Player

March to

Location Y

At Location Y?

At Location X?

Player dead?

Player in sight?

Player in sight?

10/14/2008

8

Finite State Machine

• Could exhibit more intelligence with more

states, more transitions

• Simple to write and easy to debug

• Predictable but can add transition

probabilities for element of randomness

Basic Reasoning Abilities – Layered

Behavior Architecture

• Previous example only marched, attacked

– What if other things on the AI’s mind?

• If health low, go to the hospital

• If low on ammo, go to the armory

• If outnumbered, stay and fight or run for the alarm?

– One solution to handle the conflict in action

selection is Rodney Brooks’ subsumption

architecture

• Implemented for robot systems

10/14/2008

9

Subsumption Architecture
• Responsibilities confined to isolated layers, but a

layer subsumes (takes priority over) another if
the need arises

• Within each layer we might implement the
behavior as a FSM

Survive

Sustain

Attack

Patrol

Level 4

Level 3

Level 2

Level 1

B
e

h
a

v
io

r
P

ri
o

ri
ty

Heal at Infirmary, Raise alarm

Reload at the Armory

Eliminate Humans

March between X and Y

Basic Reasoning Abilities – Other

Approaches

• Machine Learning – will discuss shortly\

– Rote learning

– Neural networks

– Genetic algorithms

– Others

• Usually in the context of a scripting language

for character behavior

10/14/2008

10

Team AI

• Often an entire army that must work together,

how to manage the multitudes of agent AI’s?

• Use the same organizational hierarchy as real

life

– Soldiers implemented as finite state machines or

other simple mechanism; might always follow

orders

– Higher-level units subdivided at higher strategic

levels

Team AI Hierarchy

Army

Division

Brigade

Company

Platoon

Squad

Soldier

100,000

20,000

5,000

500

50

10

1

10/14/2008

11

Hierarchical Control

• One mechanism is to define a goal and then create
plans to reach that goal
– Goal might be a win-situation or intermediate goal closer

to a win
• E.g. taking an enemy position, destroying a bridge, flanking the

enemy, etc.

– To reach goal must perform a series of actions

– Actions may have preconditions for the action to be
performed and postconditions as a result
• E.g. planting a charge requires the demolitions expert, action is to

plant the charge, postcondition is the target is destroyed

– The plan is the set of actions that when performed in the
given order achieves the goal

Sample Plan

• Goal Eliminate(Player)

– Preconditions

• Covered_Position(Player)

• Alive(Player)

– Plan

• Action 1: Identify_Flanking_Position(AI_1)

• Action 2: Fire_At_Player(AI_2)

• Action 3: Move_To_Flanking_Position(AI_1)

• Action 4: Fire_At_Player(AI_1)

• Action 5: Rush_Player(AI_2)

10/14/2008

12

Planner

Actions

Planner

Plan

Goal

World State

Action 1

Action 2

Action 3

Action 4

How do we come up with the Plan? Search!

Rule-Based AI

• In a similar manner, we can also create a rule-

based AI system

Rules Memory Rule

matching

Conflict

Resolution

Working

Memory

Apply Rule

Rule(s)

Fact(s)

Fact
Rule

Rule(s)

10/14/2008

13

Rule Example

Working Memory

(opponent-1 size 1000)

(opponent-2 size 100)

(army size 1000)

Rule

(rule “Attack weaker opponents”

(< (?opponent size) 500)

(> (army size) 500)

--> (attack ?opponent))

After applying the rule to our working memory, we get: (attack opponent-2)

Rule-Based System

• RBS could remove facts as driven by consequents
to reflect the dynamic nature of the game

• With a sufficient rule/fact base, can make
appropriate actions, useful for RTS games
– E.g. first, focus might be to build bases and collect

resources because military rules not able to fire

• Difficult to code the rule base; requires some CPU
time to apply the rule engine with a large number
of rules
– Does allow strategy to be decoupled from the game

engine, permit later tweaking by game developers

10/14/2008

14

References

• Jones, Tim. Artificial Intelligence, A Systems

Approach, Infinity Science Press

• http://www.gameai.com/

• Game AI, State of the Industry:

http://www.aiwisdom.com/bytopic_stateofth

eindustry.html

