

Movement Strategies

- Can encode attack/defense strategies using a simple lookup table on the simple graph
- Offense
 - If healthy use the attack strategy
- Defense
 - If not healthy take the defensive strategy

Finite State Machine

- Could exhibit more intelligence with more states, more transitions
- Simple to write and easy to debug
- Predictable but can add transition probabilities for element of randomness

Basic Reasoning Abilities – Layered Behavior Architecture

- Previous example only marched, attacked
 - What if other things on the Al's mind?
 - If health low, go to the hospital
 - If low on ammo, go to the armory
 - If outnumbered, stay and fight or run for the alarm?
 - One solution to handle the conflict in action selection is Rodney Brooks' subsumption architecture
 - Implemented for robot systems

Rule Example

Working Memory (opponent-1 size 1000) (opponent-2 size 100) (army size 1000)

Rule

(rule "Attack weaker opponents"

(< (?opponent size) 500)

(> (army size) 500)

--> (attack ?opponent))

After applying the rule to our working memory, we get: (attack opponent-2)

References

- Jones, Tim. Artificial Intelligence, A Systems Approach, Infinity Science Press
- http://www.gameai.com/
- Game AI, State of the Industry: <u>http://www.aiwisdom.com/bytopic_stateofth</u> <u>eindustry.html</u>