Lecture Notes, C411
Kenrick Mock

Chapter 4: Recurrence Rélations: Iterative and The Master Method
Iteration Method: Expand the terms into a summation, and solve agebraicaly
Example

T(n)= Theta(1) for n=1
T(n) =3T(n/4) +n for n>1

_ S o, nd
Tn) = %’W%tf a5 "
We can keep on going:

aen & noé no
+—=+—+n
3838 6421 169 4g

If we stop at this point and do some math:
T(n) = 27T(n/64) + 9(n/16) + 3(n/4) + n

3n 9n an 0
=-=nNn+— —
T(n)=n 2 16 27T%64ﬂ

There sapattern here! If we congider i asthe index, wherei=1 gives us n+(3/4)n, then we can
generdizethisasi increases

J
T(n) = n+3_n+%+ +3_+ +3,Taeno
4 16 4l ed' g

How far doesi go? Doesit increaseto infinity? NO at some point we will have to stop.
But we dready know when we stop — we stop at T(1) because at this point thereis no more

recursion, we just return a constant number for the amount of work to do.

If we stop at T(1), this means we will stop when 1=(/4").

1=— n=4 log, n=

So we can now express the recurrence relation as:

Ty =n+043N, +‘*§9n+ 3% Q(1)
4 16 e4g

subdtituting Q(1) for T(rV4) since we will only do a constant amount of work on the last
iteration.

We can summarize this as asngle summation. Firg recal that

39" = n'°%3 - thisissublinear Sncelog,3 < 1

&;) n-1
T =F8 2% oy
i=0 ﬂ

% 5 0
T(n) £5n; = T+ Q(n'*%?) : up to infinity bigger, So <= applies

o
1
1 X

3 +Q(n™?)

4
T(n) £4n+ Q(n'%?) ;T(n)E£4n+o0o(n) ;looseupper bound so use little-o

Q O_.

Ty
o

Do«
X%

Qyox
X

reca| that : for x<1

x
RS

T(n)En

This means that the recurrence is O(n).

This method is accurate but can result in alot of agebrato keep track of; can dso get very
chdlenging for more complicated recurrence relations.

Second Example: T(n)=1 if =1
T(n)=4T(n/2)+n if n>1
T(n) =4T(n/2) +n
=A(AT(n/4)+n/2)+n
=A(A(AT(rv/8)+n/4)+n/2)+n

=64T(n/8) + 4n +2n +n
=n + 2n +4n + 64T(n/8)

=n+2n+4n+ ... +2n+ ... 4T(V2) : hard part to figure out
What isthe last term? When (/2)=1 - i=lgn
T) =n+2n+4n+8n+..2n +...4% Q)
Nl =
_ o i 0 Ign
=ga2=+470Q0)
i=0 %)

rTH-l_l

Weknow that @ x* =
k=0 X' 1

Let'sle m=lgn-1. Then:

ﬁlgn—Hl _ 19 lgn
nng; 4°7Q1)
= n2°" - n+4°"Q(2)
= n* —n +n*Q(1)

= 21 Q) = Q(n?)

T(n)

Sometimes arecursion tree can help:
Recurson Tree: Help to keep track of the iterations

Given T(n) = 2T(n/2)+r?

n2
/N
T(2) T2
2 n2
2N 2
(W2f (W2 —— yon
/ N/ N\
(V4)” (n/4)*(n/4)’ (n/4Y 1ar?

How deep does the tree go?
We stop at the leaf, and we know we're at aleaf when we have aproblem of size 1.

1=(n/2)?

so rf=2? ; n=2 Ci=lgn

The amount of work doneis then:

5:) as; 22: Q(n?) ; thisis geometricaly decressing in Size, so it won't get any
tl)i_gger than rf.
n e n
(n/3) (2n/3) e n
(n/9) (2n/9) (2n/9) CITE) P n

Onemoreexample T(n) =T(n/3) + T(2/3) +n
Each levd doeswork of sze n; if we just know the height of the treg, i, the totd work isni.

The tree sopswhen the leef isof Sze 1. The hard part is to figure out the formula based on the
height:

206 .
ng?ﬁ =1 (why pick the 2/3 branch and not 1/3?)

1 ol
n=——-r7 :
B0

&30

i =10gg, N

_aB
&2

So the total work is (log,, n)n or O(nlog 31, N).

Master M ethod:

If the form of arecurrenceis T(n) :aTga%%+ f(n),a3 1b>1

then we can use the Master Method, which is a cookbook-style method for proving the runtime
of recurrence relaions that fit its parameters. Note that not al recurrence of the above form can
be solved through the master method. We won't prove the master method, but will give an
argument as to how it works.

In the master method:

a isthe number of subproblems that are solved recursively; i.e. the number of recursve
cdls.

b isthe sze of each subproblem rdative to n; /b isthe Sze of the input to the recursive cal.
f(n) isthe cost of dividing and recombining the subproblems.

Recursion tree example: T(n)=aT (n/b)+f(n)

F(n a » F(n)

4 F(nb) F(n/b) Fnb — ——> aF(nh)

e

F(b?) F(nb?) Fb?) - Fb?) Fvb?) FVP) —» prmip)
log, n

Q() QD) ——Q(n'*?)

logyn-1 i
Total :Q(n'°gba)+ é a‘fgeijg
=0 eb’ g

|-O:

What i the height of thetres? When f?i)—qi: = fQ)® b—”i=1® n=b ® i=log, n

Q

How many leaves are there?
a™9" = NumberLeaves

aIogbn - nlogba

Work a the leavesis: Q(Un'*%? = Q(n"’gba)

Work of dividing and combiningis f (n) + af (E) ra?f (b—”z)+...

log,n-1 n

=a afGy

this does not include the cost of the leaves.

log,n-1
The totdl work/runtime T(r) i Q(N'**) + 4 a‘f(g)

i=0

The time T(n) might be dominated by:

1. Thecost of the leaves

2. The cogt of the divide/lcombine or the root
3. BEvenly digributed & dl the levels

The master method tells us what the asymptotic running time will be depending on which cost is
the highest (dominates).
If theformis
_ 7&0
T(n) = aT%bb+ f(n),a3 1b>1
Then based on comparing f(n) and n'*%we know the running time given the following three

cases.

If f(n)=0(n"%**) for some constant e > Othen T(n) = Q(n'*®*?) ; cost of leaves
dominates.
If f(n)=Q(n'*?) then T(n) =Q(n'"?Ign); cost isevenly distributed

If f(n)=Wn'"%**)for someconstant e >0 andif af (E) £ cf (n) for some constant
c<land dl sufficiently large n, then T(n) = Q(f(n)) ; divide/conquer or root cost
dominates

Example

T(n)=9T(3)+n

So a=9, b=3, f(n)=n
Case 1 worksfor f(n)=0(n'%**). We need to prove this relationship by showing that:

f(n) = O(n'%*°)

n= O(nlog39-e) — O(nz- °)

if @ =1 then n=0O(n) and case 1 is satisfied.
Therefore:

T(n) = Q(n"***) = Q(n'%%) = Q(n?)

In this example, the cost of the leaves has dominated the runtime.

Example
T(n) = 2T(g) +n ;Merge Sort

So a=2, b=2, f(n)=n
Check case 1:
Is f(n)=0O(n'"%**)?
n= O(nlogZZ— e)
n=0(n"*)
For any epsilon>0, nis bigger, so case 1 does not work.

Check case 2:
Is f(n) =Q(n"**)
n=Q(n"%?)=Q(n) YES
therefore:
T(n) = Q(n»*1gn) = Q(n**Ign) = Q(nlgn)

Cogt is evenly distributed among leaves and upper part of tree.

Example
T(n)= T(%) +1

So a=1, b=3/2, f(n)=1

Case 1 does not work (exercise for the reader)
Case 2.
Is f(n) =Q(n'"%?)?
1=Q(n"") =Q(n") =Q(1) YES

therefore:

T(n) =Q(n"**1gn) = Q(n"**Ign) =Q(n"Ign) = Q(ign)

Codt isagain evenly distributed.

Example
T(n) = 3T(%) +nlgn

a=3,b=4,f(n)=nlgn

Case 1 and 2 don't fit (exercise for the reader)
Case 3:
Is f(n) = W(n'%2¢)?

nlg n= V\(nlog43+e) - V\(no.79+e)
YES, if epslon =0.21, then nlgn=W(n)

We as0 need to show the extra condition:
s af (E) £ cf (n) for c<1?

3f(%)£cf(n)

n. ano
SZIgaBE cnlgn
32(Ign- Ig4) £ cnign
3%(Ign- 2) £cnlgn

YES, if c=%then Sg(lg n-2)£ %n Ign

therefore:

T(n)=Q(f(n)=Q(nlgn)

Example

n2

lgn

T(n)=4T() +

2

Soa=4, b=2, 1=(n):|;—n

Try case 1:

Is f(n) =0(n'%**)?
2
_:Onlogz4-e
gn ()
2
_ _ 2-e
ign O(n™")

NO, for epslon>0, f(n) islarger.

Try case 2:
Is f(n) = Q(n'%2)?

2

n _ log,4) — 2
Ign_Q(n) =Q(n%)
NO, grows smaller than n?.
Try case 3:
Is f(n) = Wn'%2¢)?
n2 —_ 2+e
ign =Wn"*)

NO, for epsilon > 0, f(n) issmdler, not bigger.

Master method does not work for this recurrence rdation!
(Solutionis Q(n* Iglgn) by subdtitution)

Selection Problem (Chapter 10):

Congder the problem of finding the ith smdlest dement in aset of n unsorted dements. Thisis
referred to as the sdlection problem or the ith “ order statistic”.

If i=1 thisis finding the minimum of a st

i=n thisisfinding the maximum of aset

i=n/2 thisis finding the median or hafway point of aset -- common problem
Sdection problem defined as.

Input: A set of N numbers and anumber i, with 1<=i<=n
Output: The dement x in A that islarger than exactly i-1 other dementsin A.

How many comparisons are necessary to determine the sdection?
Say we want to find the minimum:

Lower bound of at least n-1 comparisons to see every other element
Think as a tournament:

Pick contender
Contender competes with another (comparison)
Winner isthe amdles dement

Every dement except the winner must lose one match.

Thisisagmple example to show that we need a least n-1 comparisons, we will use this
technique later in more complex examples to show alower bound.
Sdlecting theith samdlest dement:

Candoin Q(nlgn) timeeasly by sorting with Merge Sort,
and then pick A[i]. But can do better!

Condgder if the sat of n numbersisdivided asfollows:

Note that the elementsin S1 are not sorted, but al of them are smdler than eement p
(partition). We know that p isthe (|S1| +1)th smalest dement of . Wewill use thisidea later
to aso sort numbers (known as quicksort).

Now condder the following agorithm to find the ith smalest dement from Array A:

Select apivot point, p, out of array A.

Solit A into S1 and S2, where dl eementsin S1 are <p and dl dementsin S2 are
~p

If i=|S1]+1 then pistheith smdlest dement.

Elseif i<=|S1| then the ith smdlest dement is somewherein S1. Repesat the process
recursvely on Sl looking for the ith smdlest dement.

Elseiissomewherein S2. Repest the process recursively looking for the i-|S1|-1
gmdlest dement.

Question: How do we sdlect p? Best if piscloseto the median. If p isthe largest ement or
the smaled, the problem sizeis only reduced by 1.

Always pick thesamedement, nor 1

Pick arandom dement

Pick 3 random eements, and pick the median
Other method we will see later

How do we partition once we have p?
If A contains: [51286214 3]

Can create two subarrays, S1 and 2. For eech dement x in A, if x<p put it in S1, if x>=p put
itin S2.

p=5
SL:[2143]
S2: [512 8 6]

This certainly works, but requires additional space to hold the subarrays. We can dso do the
partitioning in-place, using no additiona space:

Partition(A,p,r) ; Partitions array A[p..r]
x— Alp] ; Choose firgt dement as partition element
i- p-1
jo r+l
whiletrue
do repeat
- -1
until
A[J]£ x
repest
i- i+l
until AJi] 3 x
if i<
then exchange A[i] « A[j]
esereturnj ; indicates index of partitions

Example
Alp.r]=[512862143]

X=5

5 12 2 6 2 1 4 3
3 12 2 6 2 1 4 5 swap

3 12 2 6 2 1 4 5

3 4 2 1 2 6 12 5 Crossover, i>]
j i
Returnj. All dementsin A[p.j] smdler or equa to x, al dementsin A[j+1..r] bigger or equa

tox. (Notethisisalittle different than the initid example, where we split the sstsup into<p, p,
and > p. Inthiscasethe setsare <p or >=p. If the pivot point selected happensto be the

largest or smdlest vadue, it will dso be guaranteed to split off a least one vaue). Thisroutine
makes only one pass through the array A, so it takestime Q(n) . No extra space required

except to hold index variables.

Worst case running time of sdlection: Pick min or max as partition eement, producing region of
szenl.

T(n)=T(n- 1) +Q(n)
subprob timeto plit

Evduate recurrence by iterative method:
T(1)=Q(D, T(2) = QM) +Q(2),T(3) = QD) +Q(2) + Q(J),...
a., Qi
o): B
=Q(n?)

Recursion tree for worst case:

n —n
/N
1 n-1
n RN
1 n-2
L1
- Total = Q(n?)

- > nl

— n-2

Best- case Partitioning:

In the best case, we pick the median each time.
n

T(n) = T(E) +Q(n)

Using the master method: a=1, b=2, f(N)=Q(n)
Cae3: s f(n) =Wn'%2¢)?

Q(n) = W)

Q(n) = Wn"*)
YESif epsilon between 0 and 1, say 0.5

Alois af (E) £ cf (n) for c<1?

Q)£ Q)
YESifc>%

So T(n) =Q(f(n)) =Q(n)

Recurson Treefor Best Case:

_) .
n/2 n/2 — N2

Ign
n/4 n/4 — n/4
1 1 Total = Q(n)

Average Case: Can think of the average case as dternating between good splits where nis split
in haf, and bad splits, where amin or max is selected as the split point.

Recursion tree for bad/good split, good split:

_ n L
N2 n2 2
2*1dh 1 (V)1 —— 2
i ((n/2-1)//2 \((n/2)-1)/2 — »n/4

1. ik
Total = Q(n)
Both are Q(n), with just alarger congtant in the event of the bad/good split.
S0 average case dill runsintimeQ(n) .

We can solve this problem in wordst-case linear time, but it istrickier. In practice, the overhead
of this method makes it not useful in practice, compared to the previous method. However, it
has interesting theoretical implications.

Bascidea: Find apartition eement guaranteed to make a good split. We must find this
partition element quickly to ensureQ(n) time. Theideaisto find the median of asample of

medians, and use that as the partition e ement.

New partition selection agorithm:

Arrange the n dements into n/5 groups of 5 dements each, ignoring the a most four extra
eements. (Congant time)

Find the median of each group. Thisgivesalis M of n/5 medians. (time Q(n) if we use
the same median sdection dgorithm as this one or hard-code it)

Find the median of M. Return this asthe partition dement. (Cal partition sdection
recurgvey using M astheinput s&t)

See picture of median of medians.

Guarantees that at least 30% of nwill be larger than pivot point p, and can be diminated each
time!
Runtime (M =T(Y + 1Y + o(n)

5 10

sdect recurse overhead of split/sdlect
pivot subprob

The O(n) time will dominate the computation by far resulting in O(n) run time.

Quicksort

We can a0 use the Partition selection agorithm to do sorting, thisis caled Quicksort.

QuickSort(A,p,r)
if p<r
then

; Sort A[p..r]

g- Patition(A,p,r)
QuickSort(A,p,q)
QuickSort(A,g+1,r)

A=[53264137]
Partitionon 5

A=[32413]

A=[675]
Partition on 3 Partition on 6
/S N / DN
A=[12] A =[334] A=5 A=[67]
Partitionon1 Partitionon 3 Partition on 6
A=1/ }zz T D 7N
A=S A=[34 A=6 A=7
Partition on 3
/N
A=3 A=4

Show tree for sorting example of A=[5326 4 1 37], usefirs e ement as partition:

Now do an in-order tree-traversal and we get the list in sorted order.
What'sgoing on if we do thisin-placein the array:

QS(A,1,8): A=5,3,2,6,4,1,3,7
Partition 5: A=3,2,4,1,3,6,5,7

QS(A,1,5) QS(A,6,8)
PTrtition 3:A=2,1334,657 / Partition 6: A=1,2,3,3,4,6,5,7

A 15 QS(A,6,6) QS(A,7.,8)
QS(A.L.2) Terminate Partition 6: A=1,2,3,3,4,5,6,7
Partition 2: A=1,2,3,3/4,... ' P
QSALD) QSA22) QAT QSR8
Terminate Terminate Terminate Terminate

QS(A ,‘1'%,5)

/ Partition 3: A=1,2,3,3,4,...
QS(A,3,3) QS(A 4.,5)
Terminate Partition 3: A=1,2.3.3.4,...

QS(A44) QS(A55)

Terminate Terminate

We end up with the sorted array at the end of the recursive steps, following the tree from left-
to-right (inorder).

All work is donein Partition.

Worst caseruntime: T(n) = T(n- 1) + Q(n) which we know is Q(n?)

Best caeruntime: T(n) = 2T(g) +Q(n) which is the same as Merge Sort
we know is Q(nlgn)

Average case: Same argument as before, dternating good and bad splits. Resultsin same asthe
best case runtime but with larger constants than the best case, Q(nlign).

Even though Quick Sort has the same average case runtime than Merge Sort (Q(nlgn)),

usualy Quick Sort has smaller runtime congtants than Merge sort, resulting in an overdl faster
execution time.

What if we ran the median of median strategy to find partition point? Still would get Q(nlgn).

Random drategy usudly best, pick asmal # of random eements, and use median of those
elements as the partition point.

