Introduction to Sockets and Sockets Programming

Programming TCP/IP in Unix is based on sockets, while Windows uses winsock. Both

are smilar but the implementation is somewhat different. Here we will focus on Unix

BSD sockets. However, the same concepts apply to Windows sockets (dthough there are
higher-leve libraries for network programming on Windows that are easier to use, based
on event-driven programming).

Ports

Each process that wants to communicate with another process identifies itsdlf to the
TCP/IP protocol suite by one or more ports. A port is a 16-bit number, used by the host-
to-hogt protocol to identify to which higher-leve protocol or application program
(process) it must ddliver incoming messages. In the OSl modd, a port isreferred to asan
SAP (Service Access Point).

As some higher-leve programs are themsdlves protocols, standardized in the TCP/IP
protocol suite, such as TELNET and FTP, they use the same port number in dl TCP/IP
implementations. Those "assigned” port numbers are called well-known portsand the
standard applications are known as well-known services. Both UDP and TCP usethe
same port numbers.

The"wdl-known" ports are controlled and assigned by the Internet Assigned Numbers
Authority (IANA) and on most systems can only be used by system processes or by
programs executed by privileged users. The assgned "wdl-known" ports occupy port
numbers in the range 0 to 1023. The ports with numbers in the range 1024-65535 are not
controlled by the IANA and on most systems can be used by ordinary user-devel oped
programs. Client-developed programs will generdly request an available port from the
operating system, so ports may change from one invocation to the next.

Sockets

A socket iswhat alows a process to communicate with other processes. This means that
your applications will need a socket to communicate with TCP. From the perspective of
your program, asocket isalot like a Unix file handle, but it requests network services
from the operating system.

A socket addressisthetriple: { protocol, loca-address, local-port}
In the TCP/IP suite, for example: {tcp, 137.229.134.205, 6666}

In client/server processing, you will need to have a socket on the server Sdeand a
separate socket on the client Sde. In this case, the client might have a socket of {tep,
137.229.134.204, 10304} and it communicates with a server at {tcp, 137.229.134.205,
25}.

An overview of where sockets lie in terms of the TCP/IP layers is shown below:

Client Process Server Process

handle handle
Socket Layer, Socket Layer,
Read/Write Read/Write
Buffers Buffers
TCP/ UDP TCP/ UDP
IP IP

| |
TCP Sockets

Let's gart with usng sockets with TCP. Recdll that TCP is connection-oriented, so we
will need to first set up our connection, acknowledge the connection, then send our data
before shutting down. Since TCP isrdiable and in-order, we should have no errors and

datawill be received in the order it was sent.

Thefigure below illugtrates the sequence of calls the client and server must meke:

Server

socket() | - Open communications endpoint

bind() -- Register address with OS

listen() | -- Establish client connection, request queue size

Blocks until connection from client

accept() | -- Acceptsfirst client connection request on queue

Client
Accept() creates a new socket to
servethe new client request socket()
< »connect()
v

C read() « write()
write() »read() J

close() close()

-- Set up connection to server

-- Shut down

Hereis a description of these cdlsin more detail. To use these from C/C++, you will
typicdly need to include the following header files:

#include <sys/typesh>
#include <sys/socket.n>
#include <netinet/in.h>
#include <netdb.h>

Some others you might want/need to include are;

#include <sys/socketvar.h>
#include <arpalinet.h>
#include <unistd.h>
#include <fentl.h>

#include <errno.h>
#incdude <systimeh>

When compiling, you will likely need the—Ind and —{socket flags on Solaris and SunOS
systems.

socket(2): Both clients and servers, initialize a socket
int socket(int family, int type, int protocol);

family = AF_INET , could be AF_UNIX, AF_APPLETALK, etc.

type = socket type. SOCK_STREAM for TCP, SOCK_DGRAM for UDP
SOCK_RAW (access to innards, need root)

protocol =0 (default)

ex: s=socket(AF_INET, SOCK_STREAM, 0);

bind(2): Server modtly (client rarely), associate socket with a port address
int bind(int socket, const struct sock _addr * address, size t address len);

Thisfunction returns—1 if thereisan error, O if success.

socket = A vaid socket returned from socket()

address = A dtruct sockaddr_in, described soon. The port goesin here.
address |en = sizeof struct sockaddr_in

Use aport of 0 to have the system assign a port.

ex: bind(sockfd, (struct sockaddr *) & serv_addr, sizeof(serv_addr));

listen(2): Server only, listen for socket connections and buffer queue
int listen(int socket, int backlog);

socket = A vdid socket from socket()
backlog = Size of queue, enables concurrent connections

Thiscdl dso initidized the TCP state machine to Sart getting connections.
It returns—1 if error, O otherwise.

Ex: ligen(sockfd, 5);

accept(2) : Server only, accepts anew connection upon client connect()
int accept(int socket, struct sockaddr * address, size t *address |en);

socket = A valid socket from socket()
address = A struct sockaddr_in, described soon.
address |len = Length of the sockaddr_in

Thiscal normdly blocks (could use select). Note that address_len
iscalled by value-result. We mudt initidly set it to the length, but
it returns the client’ s port/IP/len in the address and len parameters.

The function returns—1 if error, anew socket otherwise.
Ex:
clilen = sizeof(cli_addr);
newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &clilen);

not:

clilen = szeof(cli_addr);
newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, clilen);

sockaddr Structure:
sockaddr isageneric structure . It looks like the following:

struct sockaddr {
unsigned short sa family; /* addressfamily, AF xxx */
char sa_data[14]; /* 14 bytes of protocol address */
};

Thiswill store the IP address and port. This generic structure maps into two more
detailed structures, struct sockaddr_in for INET, and struct sockaddr_un for Unix.
We care about the sockaddr_in formeat here:

struct sockaddr_in {

ghort int Sn_family; /* Addressfamily */

unsigned short int Sn_port; /* Port number */

druct in_addr sin_addr; /* Internet address */
unggned char Sn_zero[8]; /* Same Size as struct sockaddr */
};

struct in_addr {
unsigned long s _addr;
};

These are overlay structures, with the sockaddr_in being overlaid on the sockaddr.
The sn_family should be AF_INET, and you will need to st the port and the
address. Thesin_zero isused to pad the structure, and should be set to al O's.

Important: The address and port must be in network byte order. In NBO, the
most significant byte comes first. In acomputer’ sinternd representation, the
least Sgnificant byte may comefirg. Fortunately there are functionsto help you
do the conversion:

htong() — Host to Network Short, convert a short (use for PORT)
htonl() — Host to Network Long, convert along (use for ADDRESS)
ntohs() — Network to host, short

ntohl() — Network to hogt, long

Fortunately you won't need to use many of these except perhaps htonsto set the
port, because there are other functions that will look up IP addresses for you and
return them in network byte order.

Ex (this coud be called before bind()) :
struct sockaddr_in serv_addr;
bzero((char *) & serv_addr, sizeof(serv_addr));
sav_addr.sn family =AF_INET,;
serv_addr.sin_addr.s addr = htonl(ADDR);
serv_addr.sn_port = htong(PORT);

gethostbyname(3) : Thislooks up an |P address by name
struct hostent * gethostbyname(char * name);

name = The a phabetic name, e.g. www.yahoo.com

This function takes a DNS name and mapsit to an |P address “somehow”. It
might be through /etc/hosts, DNS, yellow pages, or buffered in the OS.
If successful, it returns a pointer to the struct hostent. Otherwise, it returns nulll.

Given the struct hostent*, you can access the |P address viathe h_addr field:

struct hostent *hp;
hp = gethostbyname(* www.math.uaa.a aska.edu”);
sn.sn_addr = *((struct in_addr *)hp->h_addr);

connect(2) : Client cdl to initiate connection
int connect(int socket, congt struct sockaddr * address, size t address |en);

socket = A valid socket
address = A struct sockaddr_in, described above.
address |en = Length of the sockaddr_in

Thisis used by the client to connect to the server’ s port and address defined in the
struct sockaddr_in parameter. The client does an implicit bind and aport is
assigned by the OSto the client. If thereisan error, -1 isreturned. Y ou should
check for these error conditions, because TCP might not be able to successfully
connect with the server.

read(2)/write(2) : Read or write from the socket as afile descriptor.
int read(int sock, void *buffer, size t num_bytes);
int write(int sock, void *buffer, Sze t num_bytes);

sock = socket to read/write to
buffer = datato send
num_bytes = Size of the buffer

This cdl is used to read/write data. Both return —1 if thereis an error, otherwise it
returns the number of bytes that were read/written.

With read, you may need to use aloop because TCP might return less than you
expect. For exampleif you ask for 1024 bytes, you might get two 512 byte
packets. Write will block until your datais sent, so there is no need for aloop.

Y ou can dso use send(2) and recv(2) to accomplish these same tasks. Seethe
man pages for information on these; recv has the advantage of an additiond flag,
MSG_PEEK, that dlowsyou to peek at the data but not take it out of the buffer
until the next recv cdl.

close(2) : Shuts down the socket
int closg(int fd);

fd = Y our socket.

This closes down the socket and terminates communications.

Here is a complete sample client that will print the time from CWOLF:

/* Sinple TCP streamclient that connects to CWOLF's port for tine
prints the results and quits.

*/

#i ncl ude <stdio. h>

#i nclude <stdlib. h>

#i ncl ude <errno. h>

#i ncl ude <string. h>

#i ncl ude <netdb. h>

#i ncl ude <sys/types. h>

#include <netinet/in.h>

#i ncl ude <sys/socket. h>

#define PORT 13 /* daytinme port */
#defi ne MAXDATASI ZE 500 /* nmax nunber of bytes we can get at once */
#def i ne SERV "cwol f. uaa. al aska. edu”

int main()
{

i nt sockfd, numbytes;

char buf [MAXDATASI ZE] ;

struct hostent *he;

struct sockaddr _in their_addr; /* connector's address information */

if ((he=gethostbynane(SERV)) == NULL) { /* get the host info */
perror ("gethostbyname");
exit(1);
}
if ((sockfd = socket (AF_I NET, SOCK _STREAM 0)) == -1) {
perror("socket");
exit(l);
}
their_addr.sin_famly = AF_I NET; /* host byte order */
their_addr.sin_port = htons(PORT); /* short, network byte order */
their_addr.sin_addr = *((struct in_addr *)he->h_addr);
bzero(&(their_addr.sin_zero), 8); /* zero the struct */

i f (connect(sockfd, (struct sockaddr *)&their_addr

si zeof (struct sockaddr)) == -1) {
perror("connect");
exit(1l);

}

if ((nunmbytes=recv(sockfd, buf, MAXDATASIZE, 0)) == -1) {
perror("recv");
exit(l);

}

buf [nunbytes] = "\0';
printf("Received: %", buf);
cl ose(sockfd);

return O,

UDP Sockets

Now that we ve described using TCP for sockets, UDP is actualy much smpler because
we don’t have to sat up a connection and do al the handshaking. Ingtead it is
connectionless. The figure below depicts the basic steps to follow:

Server
socket() Client
bind()
socket()
recvirom() < sendto()
C sendto() » recvirom() ;
close() close()

In UDP, we don’t need to listen and accept a connection. We do need to do some
initidization for the sockets, but once that is done we just blast data out the socket and
hopethat it isreceived. A server can receive packets, or datagrams, from multiple clients
and won't be adle to tell which iswhich unless the payload has some identifying
informetion.

We ve aready described most of these functions, except for the following differences:

socket(2):
To use UDP, instead of SOCK_STREAM use SOCK_DGRAM:
ex: s=socket(AF_INET, SOCK_DGRAM, 0);

sendto(2) : Send data, DGRAM method
Sze t sendto(int socket, void * message, Sze t message len, int flags,
struct sockaddr * address, size t address |en);

socket = A valid socket

message = Pointer to the data you wish to send

message_|len = Number of bytesto send sarting at the message’ slocation
flags=Just use 0

address = sockaddr_in structure with the port/I P address to send to
address |len = size of sock_addr_in structure

sendto returns the number of characters sent if successful, otherwise —1 if error.

recvfrom(2): Receive data, DGRAM
sze t recvfrom(int socket, void *buffer, sze t buffer_len, int flags,
struct sockaddr * address, size t *address |en);

socket = A valid socket

buffer = Pointer to the buffer to store your data

buffer_len = Number of bytes your buffer can hold

flags = Just use 0 unless you want to peek a message data

address = sockaddr_in structure filled in with the port/I P address received from
address_|en = pointer to Sze of sock_addr_in structure using value result

This function returns the number of bytes received, or —1 if there was an error.

These functions are typicaly used in aloop of somekind:

for () {
sendto(....);
recvfrom(...);

}

For some sample UDP programs, see the class website and look at “ Sample Sockets
Programsin C” and then look in the “ sockets examples src” directory.

UDP vs. TCP

When might you want to use UDP instead of TCP? In generd, UDP is better for short
messages Where you don't need error checking. Here are some comparisons.

TCP.
Stream
Reigble
Point-to-Point
Connect/Accept give us addresses, don’t need addresses in read/write (or
send/recv)
Checksum on data
UDP:
Discrete packets
Unrdiable
Can broadcast or multicast
One sarver can receive from multiple clients
Need addressesin recvfrom and sendto
May or may not have a checksum on data

Typicdly in aTCP server, we must fork() a process and have one server per connection.
The master process accepts new connections, and the dave process handles the
communications tasks.

TCP Server:
socket()
bind()
listen()
loop
accept()
if (fork()==0)
read/write

clos()
clos()
waitpid()

An example of thistype of magter server isthe inetd daemon. inetd ligenson dl the
“wdl-known” ports and spawns processes that do al of the work. See /etc/inetd.conf for
those programs that get executed.

Blocking

Many of the calls we have described so far will block; e.g. accept, recv, etc. Sometimes
thisis undesirable, because you might want your programs to do other thingsin the
interim. Theway around this problem is to use select, which can poll aset of file
descriptors for you and see if they are available or have data waiting to be read.

SHect

The sdect cal handles synchronous 1/0 multiplexing and uses the clock (which iswhy
you need to include sys/time.h and dso unistd.h). Hereisthe definition:

int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set * exceptfds,
congt gtruct timeva *timeout);

nfds = This value should be 1 + the socket (ignored by some implementations)

readfds = A pointer to a set of file and socket descriptorsthat are to be polled for
non-blocking reading and writing operations.

writefds = Same as above, but for non-blocking writing detection. Usually NULL.

exceptfds = Same as above, but for non-blocking errors. Usualy NULL.

timeout = Pointer to atimeva struct that specifies how long the select call should
wait until it pollsthe descriptorsfor activity. If the timeout vaueisO, then
sdect returnsimmediately and if the timeout value is NULL then sdect will
block until at least one descriptor is ready for 1/0.

The function returns the number of open handles ready for 1/0, or O if the timeout.

To manipulate the sat of file descriptors, there are four macros available:

FD_CLR(fd, *set) — Removes fd from the set

FD_ISSET(fd, *set) —Zeroif fdisnot in the set, nonzero if it isin the sat.
FD_SET(fd, * set) — Addsfd to the set

FD_ZERO(* s&t) — Initidize set to empty

The following snippet illudtrates the usage:

fd set fds;
druct timevd tv;

tv.tv_sec = 4;
tv.tv_usec = 300000;
/I tv now represents 4.3 seconds, 4 seconds and 300,000 microseconds

FD_ZERO(&fds);
FD_SET(sock, &fds); /I adds some valid socket “sock” to the file descriptor set
FD_SET(STDIN, &fds); // adds STDIN to the set

I/l Wait 4.3 seconds for any data to be available on the socket or STDIN
select(sock+1, &fds, NULL, NULL, &tv);

if (FD_ISSET(sock, &fds))

recvfrom(s, buffer, buffer_len, 0, &sa, &sa len);
eseif (FD_ISSET(STDIN, &fds))

... Someone pressed a key
etc.

