|mproving on Caches

Cs448

#4. Pseudo-Associative Cache

* Also called column associative

e |dea

— start with adirect mapped cache, then on a miss check another
entry

A typica next location to check isto invert the high order index bit to
get the next try

— Similar to hashing with probing
* Initia hit fast (direct), second hit slower
— may have the problem that you mostly need the slow hit
— inthis caseit’s better to swap the blocks
— like victim caches - provides selective on demand associativity

2

#5: Hardware Prefetch

Get proactive!

Modify our hardware to prefetch into the cache
instructions and datawe are likely to use

— Alpha AXP 21064 fetches two blocks on a miss from the I-
cache
» Requested block and the next consecutive block

» Consecutive block catches 15-25% of misses on a 4K direct mapped
cache, can improve with fetching multiple blocks

— Similar approach on data accesses not so good, however

Works well if we have extra memory bandwidth that is
unused

Not so good if the prefetch slows down instructions
trying to get to memory

#6 Compiler-Controlled Prefetch

Two types

— Register prefetch (load value into aregister)

— Cache prefetch (load datainto cache, need new instr)
The compiler determines where to place these
instructions, ideally in such away asto beinvisible to the
execution of the program

— Nonfaulting instructions — if thereis afault, the instruction just
turnsinto aNOP

Only makes sense if cache can continue to supply data
while waiting for prefetch to complete
— Called anonblocking or lockup-free cache

Loops are akey target

Compiler Prefetch Example

for (120 i<3 i+4) Using a Write-Back cache
for (j=0; j<100; j++)
a[i]1[j]=b[j][0]+b[j+1][0];

T Temporal locality
Spatial locality "~ Hits on next iteration
Say even j’s miss, odd hit Misses on j=0 only
Total of 300/2 = 150 misses Total of 101 misses

Prefetched version, assuming we need to prefetch 7 iterations in
advance to avoid the miss penalty. Doesn’t addressinitial misses:

for (j=0; j<100; j++) {

prefetch(b[j+7][0]); . .
prefetch(al0][j+7]): Fetch for 7 |terat!onslgter _
a[0][j]1=b[j][0]+b[j+1][0]; Pay penalty for first 7 iterations

for (i=0; i<3; i++) _ _
for (j=0; j<100; j++) { Total misses=(3*7/2) + 1+ 7
prefetch(ali][]+7]); =19 5

ali][j]=b[j][0]+b[j+1][0Q]; }

#7 Compiler Optimizations

 Lotsof options
» Array merging
— allocate arrays so that paired operands show up in same cache
block
 Loop interchange
— exchange inner and outer loop order to improve cache
performance
* Loop fusion
— for independent |oops accessing the same data
— fuse these loops into a single aggregate loop
» Blocking
— Do as much as possible on a sub-block before moving on
— WEe'll skip thisone 6

Array Merging

Given aloop likethis: For spatial locality, instead use:
int val 1[SI ZE], val 2[SI ZE] ; struct nerge {
for (i=0; i<1000; i++) { int vall, valZ2;

x +=vall[i] * val2[i]; } niSlzE];

}
for (i=0; i<1000; i++) {
x +=nfi].vall * nfi].val2;
For some situations, array }
splitting is better:
al2 unused, getting in the way of
struct nerge { v) ’) -
int vall, val2; /spatlal locality. First version could
} mi[SIZE], n2[SlZE]; actually be better!

for (i=0; i<1000; i++) { Objects can be good
x += pmil[i].vall * n2[i].vall; or bw’ depending
J on access pattern 7

Loop Interchange

for (i=0; i<100; i++) {
for (j=0; j< 5000; j++)
X[IT[j]++
}
Say the cache is small, much less than 5000 numbers

WEe'll have many misses in the inner loop due to replacement

Switch order:
for (i=0; i<5000; i++) {
for (j=0; j< 100; j++)
x[E1[j]++
}
With spatia locality, presumably we can operate on al

100 items in the inner loop without a cache miss

Access al words in the cache block before going on to the next ong

Loop Fusion

for (i=0; i<100; i++) {
for (j=0; j< 5000; j++)
} ali][j1=ubli][j] * c[il[il;
for (i=0; i<100; i++) {
for (j=0; j< 5000; j++)
} diillil=ali][i] * c[il[il;

Merge loops:
for (i=0; i<100; i++) {
for (j=0; j< 5000; j++)

ali][j]=1/bli][j] * c[i][j];
diiffjl=ali][j] * c[il[jl];

}
Freeload on cached valuel 9

Reducing Miss Penalties

» So far we' ve been talking about ways to reduce
cache misses

 Let’sdiscuss now reducing access time (the
penalty) when we have a miss

* What we've seen so far

— #1: Write Buffer
» Most useful with write-through cache

* no need for the CPU to wait on awrite
— hence buffer the write and let the CPU proceed
— needs to be associative so it can respond to aread of a buffered
value

10

Problems with Write Buffers

» Consider this code sequence
— SW 512(R0), R3 < Mapsto cacheindex 0
— LW R1, 1024(R0) < Mapsto cacheindex O
— LW R2, 512(R0) < Mapsto cacheindex 0
* ThereisaRAW data hazard
— Storeis put into write buffer
— First load puts data from M[1024] into cache index 0
— Second load resultsin amiss, if the write buffer isn’'t done
writing, the read of M[512] could put the old value in the cache
and then R2
» Solutions
— Make the read wait for write to finish
— Check the write buffer for contents first, associative memory!

#2 Other Ways to Reduce Miss

Penalties

» Sub-Block Placement

— Large blocks reduces tag storage and increases spatia
locality, but more collisions and a higher penalty in
transferring big chunks of data

— Compromise is Sub-Blocks

— Add a“valid” bit to units smaller than the full block,
called sub-blocks

 Allow asingle sub-block to be read on a miss to reduce
transfer time

* In other modes of operation, we fetch a regular-sized block
to get the benefits of more spatial locality

12

#3 Early Restart & Critical Word
First
» CPU often needs just one word of ablock at atime

— Idea: Don’t wait for full block to load, just pass on the
requested word to the CPU and finish filling up the block while
the CPU processes the data

» Early Start

— Assoon as the requested word of the block arrives, send it to
the CPU

e Critica Word First

— Request the missed word first from memory and send it to the
CPU as soon asit arrives; let the CPU continue execution while
filling in the rest of the block

13

#4 Nonblocking Caches

 Scoreboarding or Tomasulo-based machines
— Could continue executing something else while
waiting on a cache miss

— This requires the CPU to continue fetching
instructions or data while the cache retrieves the block
from memory

— Called a nonblocking or lockup-free cache

— Cache could actually lower the miss penalty if it can
overlap multiple misses and combine multiple memory
accesses

14

#5 Second Level Caches

» Probably the best miss-penalty reduction technique, but
does throw in a few extra complications on the analysis

side...
» L1=Level 1cache L2=Leve 2 cache
Average_Memory _ Access_Time=Hit _Time(L1) + Miss_ Rate(L1) x Miss__ Penalty(L1)

Miss_ Penalty(L1) = Hit _Time(L2) + Miss_ Rate(L2) x Miss__ Penalty(L2)

» Combining gives:

Average_ Memory _ Access_Time = Hit _Time(L1) + Miss_ Rate(L1) x
(Hit_Time(L2) + Miss_ Rate(L2) x Miss_ Penalty(L2))

— little to be done for compulsory misses and the penalty goes up

— capacity missesin L1 end up with asignificant penalty reduction since they
likely will get supplied from L2

— conflict missesin L1 will get supplied by L2 unless they aso conflict in |1'52

Second Level Caches

» Terminology

— Local Miss Rate
« Number of missesin the cache divided by total accessesto the cache;
thisis Miss Rate(L 2) for the second level cache
— Global Miss Rate
« Number of missesin the cache divided by the total number of memory
accesses generated by the CPU; the global miss rate of the second-level
cacheis
— Miss Rate(L 1)* Miss Rate(L2)
« Indicates fraction of accesses that must go all the way to memory
— If L1 misses 40 times, L2 misses 20 times for 1000 references
* 40/1000 = 4% local missrate for L1
» 20/40 = 50% local missrate for L2
e 20/40* 40/1000 = 2% = globa missrate for L2
16

Effects of L2 Cache

80.0%

2% 12% 719
70.0%
60.0%
\G\sa%
50.0%
Miss 40.0% 284
rate ‘0\
30.0% 28%
20.0% 18% 159 —15es 189
T 5" "7 Local miss rate
10.0% B% &9

T 1% 1% 1% 1% 1% 1% Single cache miss rate
3%—3% 3% 2% Global miss rate

4 8 18 32 64 128 256 512 1024 2048 4098
Cache size (KB)

L2 cache with 32K L1 cache Takeaways.

Top: local missrateof L2 cache ~ Sizeof L2 shouldbe>L1

Middle: L1 cache missrate Local miss rate not a good measure
Bottom: Global missrate 17

Size of L2?

» L2 should be bigger than L1

— Everythingin L1 likely tobein L2

— If L2 isjust dlightly bigger than L1, lots of misses
» Size mattersfor L2, then..

— Could use alarge direct-mapped cache

 Large size means few capacity misses, compulsory or conflict misses
possible

— Set associativity make sense?
« Generally not, more expensive and can increase cycle time

— Most L2 caches made as big as possible, size of main memory
in older computers

18

L2 Cache Block Size

* Increased block size

— Big block size increases chances for conflicts (fewer blocksin
the cache), but not so much aproblemin L2 if it'saready big
to start with

— Sizes of 64-256 bytes are popular

200
175
Relative CPU execution time 1.50 -

125 ¢

1.00
16 32 64 128 256 512 19

Black size of second-level cache (bytes)

L2 Cache Inclusion

e ShoulddatainL1 asobeinlL2?
— If yes, L2 has the multilevel inclusion property

— This can be desirable to maintain consistency between caches
and 1/0O; we could just check the L2 cache

— Write through will support multilevel inclusion

» Drawback if yes:
— “"Wasted” spacein L2, sincewe'll haveahitinL1
— Not abig factorif L2>> L1

— Write back caches

e L2 will need to “snoop” for write activity in L1 if it wants to maintain
consistency in L2

20

10

Reducing Hit Time

» We've seen ways to reduce misses, and reduce the
penalty.. next is reducing the hit time

o #1 Simplest technique: Small and Simple Cache
— Small > Faster, lessto search

— Must be small enough to fit on-chip

» Some compromises to keep tags on chip, data off chip but
not used today with the shrinking manufacturing process

— Use direct-mapped cache
» Choiceif we want an aggressive cycle time

» Trades off hit time for miss rate, since set-associative has a
better missrate

21

#2 Virtual Caches

Virtua Memory

— Map avirtual addressto a physical address or to disk, alowing
avirtual memory to be larger than physical memory

— More on virtual memory later

Traditional caches or Physical caches
— Takeaphysica address and look it up in the cache

Virtual caches
— Same idea as physical caches, but start with the virtual address
instead of the physical address

— If dataisin the cache, it avoids the costly lookup to map from a
virtual addressto a physical address
 Actualy, we still need to the do the tranglation to make sure there is no
protection fault

Too good to be true? 2

11

Virtual Cache Problems

 Process Switching

— When aprocessis switched, the same virtual address
from a previous process can now refer to adifferent
physical addresses

 Cache must be flushed

» Too expensive to safe the whole cache and re-load it

» One solution: add PID’ s to the cache tag so we know what
process goes with what cache entry

— Comparison of results and the penalty on the next dide

23

Miss Rates of Virtually
Addressed Cache

20%, -

Miss
rate

2K 4K 8K 16K 32K 64K 128K 258K 512K 1024K

Cache size

Buniprocess [llFPDs [[]Purge . 24

12

More Virtual Cache Problems...

e Aliasing
— Two processes might access different virtual addresses that are
really the same physical address
— Duplicate valuesin the virtual cache
— Anti-aliasing hardware guarantees every cache block has a
unique physical address
* Memory-Mapped 1/0
— Would also need to map memory-mapped 1/O devicesto a
virtual addressto interact with them
» Despite theseissues...
— Virtual caches used in some of today’s processors
 Alpha, HP...

25

#3 Pipelining Writes for Fast
Hits
» Write hits take longer than read hits
— Need to check the tags first before writing data to avoid writing
to the wrong address
— To speed up the process we can pipeline the writes (Alpha)
 First, split up the tags and the data to address each independently

« On awrite, cache compares the tag with the write address
« Write to the data portion of the cache can occur in parallel with a
comparison of some other tag
— Wejust overlapped two stages
 Allows back-to-back writes to finish one per clock cycle
* Reads play no part in this pipeline, can already operate in
parallel with the tag check

26

13

Cache Improvement Summary

Miss Miss Hit Hardware

Technique rate penalty time complexity Comment

Larger block size + - 0 Trivial; RS/6000 550 uses 128

Higher associativity + - 1 e.g., MIPS R10000 is 4-way

Victim caches + 2 Similar technique in HP 7200

Pseudo-associative caches + 2 Used in L2 of MIPS R10000

Hardware prefetching of + 2 Data are harder to prefetch; tried ina

instructions and data few machines; Alpha 21064

Compiler-controlled prefetching + 3 Needs nonblocking cache too;
several machines support it

Compiler techniques to reduce + 0 Software is challenge; some ma-

cache misses chines give compiler option

Giving priority to read misses + 1 Trivial for uniprocessor, and widely

over writes used

Subblock placement + 1 Used primarily to reduce tags

Early restart and critical + 2 Used in MIPS R10000, IBM 620

word first

Nonblocking caches + 3 Used in Alpha 21064, R10000

Second-level caches + 2 Costly hardware; harder if block size
L1 # L2; widely used

Small and simple caches - + 0 Trivial; widely used

Avoiding address translation + 2 Trivial if small cache; used in Alpha

during indexing of the cache 21064

Pipelining writes for fast write + 1 Used in Alpha 21064

hits

14

