Pipelining Part |

Cs448

What is Pipelining?

 Like an Automobile Assembly Line for
Instructions

— |dedlly each step operatesin parallel

— Each step does alittle job of processing the instruction

e Simple Model
— Instruction Fetch ler o1 e
— Instruction Decode F2 D2 1 E2
— Instruction Execute B8 _1Ds 18

Ideal Pipeline Performance

« If stages are perfectly balanced:

TimePer Indruction ;e
Number _ Pipeline_ Stages
» The more stages the better?
— Each stage typically corresponds to a clock cycle
— Stages will not be perfectly balanced
— Synchronous: Slowest stage will dominate time
— Many hazards await us

» Two waysto view pipelining
— Reduced CPI (when going from non-piped to pipelined)
— Reduced Cycle Time (when increasing pipeline depth)

TimePerIndruction =

Ideal Pipeline Performance

e Implemented completely in hardware

— Exploits parallelism in a sequential instruction stream

* Invisible to the programmer!
—Not so for other forms of parallelism we will see
—Not invisible to programmer looking to optimize
— Compiler must become aware of pipelining issues
« All modern machines use pipelines
—Widely used in 80's
—Multiple pipelinesin 90's

DLX Instructions

1-Type
yp 16
|Onmd@| sl | rd | Immediate |
Loads & Stores Mostly just look at I-

rd € rs op immediate Type for now
Conditional Branches

rsl is the condition register checked, rd unused, immediate is offset

R-Type and JType
6 5 5 5 11
|ﬂ'nr*ndp | rsl | rs2 | rd | func |

|mede| Offset added ta PC |

Unpipelined DLX

» Every DLX instruction can be executed in 5 steps
e 1. IF —Instruction Fetch

— IR €Mem[PC]

—NPC & PC+4 ; Next Program Counter
e 2. 1D —Ingtruction Decode / Register Fetch

— A € Regd[IRg 10 ; sl

— B € Reg9[IR11 15] ;rd

— Imm € (IRe)'8 ## IRy5 3 ; Sign extend immediate
— Fetch operands in parallel for later use.

« Might not be used!

* Fixed Field decoding

Unpipelined DLX

» 3. EX - Execution/ Effective Address Cycle
— There are four operations depending on the opcode decoded
from the previous stage
— Memory Reference
* ALUOutput € A +Imm
— Register-Register ALU Operation

; Compute effective address

* ALUOutput € A func B ; eg.R1+R2
— Register-lmmediate ALU Operation

* ALUOutput < A op Imm ;eg.R1+10
— Branch

* ALUOutput € NPC +Imm ; PC based offset
« Cond< AopO ; e.g.opis==for BEQZ
— Notethat the load/store architecture of DLX means that effective address
and execution cycles can be combined into one clock cycle since no
instruction needs to simultaneously calculate a data address and perform an
ALU op

Unpipelined DLX

e 4, MEM — Memory Access/ Branch Completion

— There are two cases, one for memory references and
one for branches
—Both cases
« PC € NPC
—Memory reference
* LMD €Mem[ALUOutput]

; Update PC

; for memory Loads

* Mem[ALUOutput] < B ; or Stores
 Note the address was previously computed in step 3
—Branch

* If (cond) PC € ALUOutput ; PC gets new address

8

Unpipelined DLX

* 5. WB — Write Back
— Writes data back to the REGISTER FILE
« Memory writes were done in step 4
— Three options
— Register to Register ALU

Hardware Implementation of
DLX Datapath

* Regs]IR 6 2] € ALUOutput ; rd for R-Type = n_i.' JHE | =l
— Register-Immediate ALU Wil i ™
* Regs]IRy; 15] € ALUOuUtput rd for -Type S e —
— Load Ingtruction
* Regd[IRy; 15] € LMD ; LMD from 4
° Registers between stages - Pipelined 10

Unpipelined DLX
I mplementation
» Most instructions require five cycles
» Branch and Store require four clock cycles
—Which aren’t needed?
— Reduces CPI to 4.83 using 12% branch, 5% store
frequency
« Other optimizations possible
 Control Unit for five cycles?
— Finite State Machine
— Microcode (Intel)

Why do we need Control ?

 Clock pulse controls when cycles operate

— Control determines which stages can function, what
dataispassed on

— Registers are enabled or disabled via control
—Memory hasread or write lines set via control

— Multiplexers, ALU, etc. must be selected
* COND sdects if MUX is enabled or not for new PC value

« Control mostly ignored in the book
—WEe Il do the same, but remember... it'sacomplex and
important implementation issue

12

Adding Pipelining

* Run each stage concurrently

» Need to add registersto hold data between stages
— Pipeline registers or Pipeline latches

— Rather than ~5 cycles per instruction, 1 cycle per instruction!
— |deal case:

* Redly thissmple?
— No, but itisagood idea... we'll see the pitfals shortly

Important Pipeline

Characteristics
« Latency

— Time required for an instruction to propagate through the
pipeline
— Based on the Number of Stages * Cycle Time

— Dominant if there are lots of exceptions / hazards, i.e. we have
to constantly be re-filling the pipeline

» Throughput
— The rate at which instructions can start and finish
— Dominant if there are few exceptions and hazards, i.e. the
pipeline stays mostly full
« Notewe need an increased memory bandwidth over the
non-pipelined processor

14

Pipelining Example

» Assumethe 5 stages take time 10ns, 8ns, 10ns, 10ns, and
7ns respectively
* Unpipeined
— Aveinstr execution time = 10+8+10+10+7= 45 ns
 Pipelined
— Each stage introduces some overhead, say 1ns per stage
— We can only go as fast as the Sowest stage!

— Each stage then takes 11ns; in steady state we execute each
instruction in 11ns

— Speedup = UnpipelinedTime/ Pipelined Time
=45ns/11ns=4.1times or about a4X speedup

Note: Actually a higher latency for pipelined instructions!

Pipelining Hazards
 Unfortunately, the picture presented so far isabit too
good to betrue... we have problems with hazar ds
e Structural
— Resource conflicts when the hardware can’t support al
combinations of overlapped stages
— eg. Might use ALU to add PC to PC and execute op
¢ Data
— An instruction depends on the results of some previous
instruction that is still being processed in the pipeline
—-eg.RI=R2+R3; R4=R1+R6; problem here?
e Control
— Branches and other instructions that change the PC

— If we branch, we may have the wrong instructionsin the
pipeline

Structural Hazards

 Overlapped execution may require duplicate
resources

vt

» Clock 4:
—Memory accessfor i may conflict with IFfor i+4
* May solve via separate cache/buffer for instructions, data
— IF might usethe ALU which conflictswith EX

17

Dealing with Hazards

* One solution: Stall
— Let theingtructions later in the stage continue, and
stall the earlier ingtruction

* Need to do in this order, since if we stalled the later
instructions, they would become a bottleneck and nothing
€lse could move out of the pipeline

— Oncethe problemiscleared, the stall is cleared

— Often called a pipeline bubble since it floats through
the pipeline but does no useful work

» Stallsincrease the CPI from itsideal value of 1

18

Structural Hazard Example

» Consider a CPU with a single memory pipeline
for dataand instructions

— If an instruction contains a data memory reference, it
will conflict with theinstruction fetch

—We will introduce a bubble while the latter instruction
waitsfor thefirstinstruction to finish

Structural Hazard Example

20

Structural Hazard Example

No Instr
finished
- [=14 '—:""'Ii;!f [~ in CC8
= 4] -
b gl
I g
) e G (omd) Gy
[
= =t JR | |
What if Instruction 1 is also a LOAD? 2

Alternate Depiction of Stall

Uil wvalt wmmrs

»

22

Avoiding Structural Hazards

» How can we avoid structural hazards?
— Issue of cost for the designer

— E.g. alow multiple access paths to memory
« Separate access to instructions from data

— Build multiple ALU or other functional units

» Don't forget the cost/performance tradeoff and Amdahl’s
law

— If we don’'t encounter structural hazards often, it might not be
worth the expense to design hardware to address it, instead just
handle it with a stall or other method

23

Measuring Performance with
Stalls

alining= AVe_Instr_Time_Unpiped
Speedup_ from_Pipelining Ave_Instr_Time_Pipdlined
_ _CPI_Unpiped , Clock_Cycle_Unpiped
CPI _Pipelined Clock_ Cycle_ Piped

Ideal_cpi =—CP1 _Unpiped
- Pipeline_ Depth
CPI _Unpiped = Ideal _CPI" Pipeline _ Depth

We aso know that:

Substitution Yields:

Ideal _CPI *Pipeline_Depth, Clock_Cycle_Unpiped

Speedup_from_Pipeling= CPl_Pipdined Clock_Cyde_Piped

24

Measuring Stall Performance

Given: Ideal _CPI * Pipeli Depth, Clock le_Unpi
Speedup_ from_Pipeling= = ipdine_Depth, Clock_Cyde Unpiped

CPI _Pipelined Clock_Cydle _Piped

We can calculate CPI_Pipelined:
CPI _ Pipelined =Ideal _CPI +Sall _Cycles _ Per _ Instruction

Theideal CPI isjust the value 1. Substituting thisin:

1* Pipeline_Depth . Clock _ Cycle_Unpiped

eed from_Pipelining=
Speedup_ L Pipeiining 1+ Stall_Cycles_Per _Instruction Clock_ Cycle_ Piped

Assuming no overhead in pipelined clock cycles (i.e. the latch
time) then the clock cycle ratio isjust 1, yielding:

Pipeline_Depth
1+ Stall_Cycles_Per _Instruction

Speedup_ from_Pipelining=

How Redlistic is the Pipeline
Speedup Equation?
Good for aballpark figure, comes closeto aSWAG
Overhead in pipeline latches shouldn’t be ignored
Effects of pipeline depth
— Deeper pipelines have a higher probability of stalls
— Also requires additional replicated resources and higher cost

Need to run simulations with memory, 1/0 systems,
cache, etc. to get a better idea of speedup

Next we' [l examine the myriad of problems from data
hazards and control hazards to further complicate our
simplepipeline

26

