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Pipelining Part I

CS448
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What is Pipelining?

• Like an Automobile Assembly Line for 
Instructions
– Each step does a little job of processing the instruction
– Ideally each step operates in parallel

• Simple Model
– Instruction Fetch
– Instruction Decode
– Instruction Execute

F1 D1 E1
F2 D2 E2

F3 D3 E3
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Ideal Pipeline Performance

• If stages are perfectly balanced:

• The more stages the better?
– Each stage typically corresponds to a clock cycle
– Stages will not be perfectly balanced
– Synchronous: Slowest stage will dominate time
– Many hazards await us

• Two ways to view pipelining
– Reduced CPI (when going from non-piped to pipelined)
– Reduced Cycle Time (when increasing pipeline depth)

StagesPipelineNumber

tructionTimePerIns
tructionTimePerIns Unpiped

__
=
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Ideal Pipeline Performance

• Implemented completely in hardware
– Exploits parallelism in a sequential instruction stream

• Invisible to the programmer!
– Not so for other forms of parallelism we will see
– Not invisible to programmer looking to optimize
– Compiler must become aware of pipelining issues

• All modern machines use pipelines
– Widely used in 80’s
– Multiple pipelines in 90’s
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DLX Instructions

Opcode     rs1       rd           Immediate
6            5          5                16

I-Type

Loads & Stores
rd ß rs op  immediate

Conditional Branches
rs1 is the condition register checked, rd unused, immediate is offset

Opcode     rs1       rs2         rd                        func
6            5            5             5           11

Opcode       Offset added to PC

R-Type and J-Type

Mostly just look at I-
Type for now
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Unpipelined DLX

• Every DLX instruction can be executed in 5 steps
• 1. IF – Instruction Fetch

– IR ßMem[PC]
– NPC ß PC + 4 ; Next Program Counter

• 2. ID – Instruction Decode / Register Fetch
– A ß Regs[IR6..10] ; rs1
– B ß Regs[IR11..15] ; rd
– Imm ß (IR16)16 ## IR16..31 ; Sign extend immediate
– Fetch operands in parallel for later use. 

• Might not be used!
• Fixed Field decoding
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Unpipelined DLX
• 3. EX - Execution / Effective Address Cycle

– There are four operations depending on the opcode decoded 
from the previous stage

– Memory Reference
• ALUOutput ß A + Imm ; Compute effective address

– Register-Register ALU Operation
• ALUOutput ß A func B ;  e.g. R1 + R2

– Register-Immediate ALU Operation
• ALUOutput ß A op Imm ; e.g. R1 + 10

– Branch
• ALUOutput ß NPC + Imm ; PC based offset
• Condß A op 0 ; e.g. op is == for BEQZ

– Note that the load/store architecture of DLX means that effective address 
and execution cycles can be combined into one clock cycle since no 
instruction needs to simultaneously calculate a data address and perform an 
ALU op
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Unpipelined DLX

• 4. MEM – Memory Access / Branch Completion
– There are two cases, one for memory references and 

one for branches
– Both cases

• PC ß NPC ; Update PC

– Memory reference
• LMD ßMem[ALUOutput] ; for memory Loads
• Mem[ALUOutput] ß B ; or Stores
• Note the address was previously computed in step 3

– Branch
• If (cond) PC ß ALUOutput ; PC gets new address
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Unpipelined DLX

• 5.  WB – Write Back
– Writes data back to the REGISTER FILE

• Memory writes were done in step 4
– Three options
– Register to Register ALU

• Regs[IR16..20] ß ALUOutput ; rd for R-Type
– Register-Immediate ALU

• Regs[IR11..15] ß ALUOutput ; rd for I-Type

– Load Instruction
• Regs[IR11..15] ß LMD ; LMD from 4
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Hardware Implementation of 
DLX Datapath

Registers between stages à Pipelined
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Unpipelined DLX 
Implementation

• Most instructions require five cycles
• Branch and Store require four clock cycles

– Which aren’t needed?
– Reduces CPI to 4.83 using 12% branch, 5% store 

frequency

• Other optimizations possible
• Control Unit for five cycles?

– Finite State Machine
– Microcode (Intel)
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Why do we need Control?

• Clock pulse controls when cycles operate
– Control determines which stages can function, what 

data is passed on
– Registers are enabled or disabled via control
– Memory has read or write lines set via control
– Multiplexers, ALU, etc. must be selected

• COND selects if MUX is enabled or not for new PC value

• Control mostly ignored in the book
– We’ll do the same, but remember… it’s a complex and 

important implementation issue
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Adding Pipelining

• Run each stage concurrently
• Need to add registers to hold data between stages

– Pipeline registers or Pipeline latches
– Rather than ~5 cycles per instruction, 1 cycle per instruction!
– Ideal case:

• Really this simple?  
– No, but it is a good idea… we’ll see the pitfalls shortly
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Important Pipeline 
Characteristics

• Latency
– Time required for an instruction to propagate through the 

pipeline
– Based on the Number of Stages * Cycle Time
– Dominant if there are lots of exceptions / hazards, i.e. we have

to constantly be re-filling the pipeline
• Throughput

– The rate at which instructions can start and finish
– Dominant if there are few exceptions and hazards, i.e. the 

pipeline stays mostly full
• Note we need an increased memory bandwidth over the 

non-pipelined processor
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Pipelining Example

• Assume the 5 stages take time 10ns, 8ns, 10ns, 10ns, and 
7ns respectively

• Unpipelined
– Ave instr execution time = 10+8+10+10+7= 45 ns

• Pipelined
– Each stage introduces some overhead, say 1ns per stage
– We can only go as fast as the slowest stage!
– Each stage then takes 11ns; in steady state we execute each 

instruction in 11ns
– Speedup = UnpipelinedTime / Pipelined Time

= 45ns / 11ns = 4.1 times    or about a 4X speedup

Note: Actually a higher latency for pipelined instructions! 16

Pipelining Hazards
• Unfortunately, the picture presented so far is a bit too 

good to be true… we have problems with hazards
• Structural

– Resource conflicts when the hardware can’t support all 
combinations of overlapped stages

– e.g. Might use ALU to add PC to PC and execute op
• Data

– An instruction depends on the results of some previous 
instruction that is still being processed in the pipeline

– e.g. R1 = R2 + R3;    R4 = R1 + R6;    problem here?
• Control

– Branches and other instructions that change the PC
– If we branch, we may have the wrong instructions in the 

pipeline
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Structural Hazards

• Overlapped execution may require duplicate 
resources

• Clock 4:
– Memory access for i may conflict with IF for i+4

• May solve via separate cache/buffer for instructions, data

– IF might use the ALU which conflicts with EX
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Dealing with Hazards

• One solution: Stall
– Let the instructions later in the stage continue, and 

stall the earlier instruction
• Need to do in this order, since if we stalled the later 

instructions, they would become a bottleneck and nothing 
else could move out of the pipeline

– Once the problem is cleared, the stall is cleared
– Often called a pipeline bubble since it floats through 

the pipeline but does no useful work

• Stalls increase the CPI from its ideal value of 1
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Structural Hazard Example

• Consider a CPU with a single memory pipeline 
for data and instructions
– If an instruction contains a data memory reference, it 

will conflict with the instruction fetch
– We will introduce a bubble while the latter instruction 

waits for the first instruction to finish
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Structural Hazard Example



6

21

Structural Hazard Example

What if Instruction 1 is also a LOAD? 

No Instr 
finished 
in CC8
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Alternate Depiction of Stall
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Avoiding Structural Hazards

• How can we avoid structural hazards?
– Issue of cost for the designer
– E.g. allow multiple access paths to memory

• Separate access to instructions from data

– Build multiple ALU or other functional units

• Don’t forget the cost/performance tradeoff and Amdahl’s 
law
– If we don’t encounter structural hazards often, it might not be 

worth the expense to design hardware to address it, instead just
handle it with a stall or other method
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Measuring Performance with 
Stalls

PipedCycleClock
UnpipedCycleClock

PipelinedCPI
UnpipedCPI

PipelinedTimeInstrAve
UnpipedTimeInstrAvePipeliningfromSpeedup

__
__*

_
_

___
_____

=

=

We also know that:

DepthPipelineCPIIdealUnpipedCPI
DepthPipeline

UnpipedCPICPIIdeal

___
_

__

×=

=

Substitution Yields:

PipedCycleClock
UnpipedCycleClock

PipelinedCPI
DepthPipelineCPIIdeal

PipelingfromSpeedup
__

__
*

_
_*_

__ =
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Measuring Stall Performance

PipedCycleClock
UnpipedCycleClock

PipelinedCPI
DepthPipelineCPIIdeal

PipelingfromSpeedup
__

__
*

_
_*_

__ =
Given:

We can calculate CPI_Pipelined:

nInstructioPerCyclesStallCPIIdealPipelinedCPI _____ +=

The ideal CPI is just the value 1.  Substituting this in:

PipedCycleClock
UnpipedCycleClock

nInstructioPerCyclesStall
DepthPipelinePipeliningfromSpeedup

__
__*

___1
_*1__

+
=

Assuming no overhead in pipelined clock cycles (i.e. the latch 
time) then the clock cycle ratio is just 1, yielding:

nInstructioPerCyclesStall
DepthPipelinePipeliningfromSpeedup

___1
___

+
=
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How Realistic is the Pipeline 
Speedup Equation?

• Good for a ballpark figure, comes close to a SWAG
• Overhead in pipeline latches shouldn’t be ignored
• Effects of pipeline depth

– Deeper pipelines have a higher probability of stalls
– Also requires additional replicated resources and higher cost

• Need to run simulations with memory, I/O systems, 
cache, etc. to get a better idea of speedup

• Next we’ll examine the myriad of problems from data 
hazards and control hazards to further complicate our 
simple pipeline


