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Pipelining Part 2
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Data Hazards

• Data hazards occur when the pipeline changes the 
order of read/write accesses to operands that 
differs from the normal sequential order

• Example:
– ADD R1, R2, R3
– SUB R4, R1, R5
– AND R6, R1, R7
– OR R8, R1, R9
– XOR R10, R1, R11

• Looks pretty innocent, what is the problem?
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Data Hazard Example

Results of first ADD not available when the SUB needs it!
Any instructions correct?
Could be even worse with memory-based operands

Split
Cycle
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Forwarding

• Technique to minimize data stalls as in the previous 
example

• Note we’ve actually computed the correct result needed 
by the other instructions, but it’s in an earlier stage
– ADD R1, R2, R3 R1 at ALUOutput
– SUB R4, R1, R4 Need R1 at ALUInput

• Forward this data to subsequent stages where it may be 
needed
– ALU result automatically fed back to input latch for next stage
– Need control logic to detect if the feedback should be selected,

or the normal input operands
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Forwarding
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Scoreboarding

• One way to implement the control needed for 
forwarding

• Scoreboard stores the state of the pipeline
– What stage each instruction is in
– Status of each destination register, source register
– Can determine if there is a hazard and know which 

stage needs to be forwarded to what other stage
• Controls via multiplexer selection

• If state of the pipeline is incomplete
– Stalls and get pipeline bubbles
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Another Data Hazard Example

• What are the hazards here?
– ADD R1, R2, R3
– LW R4, 0(R1)
– SW 12(R1), R4

• Need forwarding to other stages than the same 
one
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Data Hazard Classification

• Three types of data hazards
• Instruction i comes before instruction j

– RAW :  Read After Write
• j tries to read a source before i writes it, so j incorrectly gets 

the old value.  Solve via forwarding.
– WAW : Write After Write

• j tries to write an operand before it is written by i, so we end
up writing values in the wrong order

• Only occurs if we have writes in multiple stages
– Not a problem with DLX integer instructions
– We’ll see this when we do floating point
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Data Hazard Classification

• WAR : Write After Read
– j tries to write a destination before it is read by i, so i 

incorrectly gets the new value
– For this to happen we need a pipeline that writes 

results early in the pipeline, and then other instruction 
read a source later in the pipeline

– Can this happen in DLX?
– This problem led to a flaw in the VAX

• RAR : Read After Read
– Is this a hazard?
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Forwarding is not Infallible

• Unfortunately, forwarding does not handle all 
cases, e.g.:
– LW R1, 0(R2)
– SUB R4, R1, R5
– AND R6, R1, R7
– OR R8, R1, R9

• Load of R1 not available until MEM, but we need 
it for the second instruction in ALU
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Data Hazard Requiring Stall

Result needed before it is even computed! 12

Data Hazard Stall

• Need hardware (pipeline interlock) to detect the data 
hazard and introduce a vertical pipeline bubble

• Other stalls possible too
– Cache miss, stall until data available
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Compilers to the Rescue

• Compilers can help arrange instructions to avoid 
pipeline stalls, called Instruction Scheduling

• Compiler knows delay slots (the next instruction 
that may conflict with a load) for typical 
instruction types
– Try to move other instructions into this slot that don’t 

conflict
– If one can’t be found, insert a NOP
– More formal methods to do this using dataflow graphs
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Compiler Scheduling Example

• A=B+C;  D =E+F
– LW R1, B
– LW R2, C
– ADD R3, R1, R2 ß Need to stall for R2 
– SW A, R3
– LW R4, E
– LW R5, F
– ADD R6, R4, R5 ß Need to stall for R5
– SW D, R6
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Compiler Scheduling Example

• A=B+C;  D =E+F
– LW R1, B
– LW R2, C
– LW R4, E ß Swap instr, no stall
– ADD R3, R1, R2
– LW R5, F
– SW A, R3
– ADD R6, R4, R5
– SW D, R6
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Compiler Scheduling a Big Help

• Percentage of loads causing stalls with DLX
– TeX

• Unscheduled  65%
• Scheduled 25%

– SPICE
• Unscheduled 42%
• Scheduled 14%

– GCC
• Unscheduled 54%
• Scheduled 31%
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Control Hazards

• Control hazards result when we branch to a new location 
in the program, invalidated everything we have loaded in 
our pipeline
– Potentially a greater performance loss than data hazards
– Simplest solution: Stall until we know the branch

• Actually a three cycle stall, since we may need a new IF
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Control Hazards

• Big hit in performance – can reduce pipeline 
efficiency by over 1/2

• To reduce the clock cycles in a branch stall:
– Find out whether the branch is taken or not taken 

earlier in the pipeline
• Avoids longer stalls of everything else in the pipeline

– Compute the taken PC earlier
• Lets us fetch the next instruction with fewer stalls
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Original DLX Datapath

Branch not computed until EX stage 20

Revised DLX Datapath

Move branch logic to ID stage to reduce branch penalty
Downside – may make ID stage longer
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Software-Based Branch 
Reduction Penalty

• Design ISA to reduce branch penalty
– DLX’s BNEZ, BEQZ, allows condition code to be 

known during the ID stage
• Branch Prediction

– Compute likelihood of branching vs. not branching, 
automatically fetch the most likely target

– Can be difficult; we need to know branch target in 
advance
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Branch Behavior

• How often are branches taken?
• For DLX from chapter 2:

– 17% branches
– 3% jumps or calls

• Taken vs. Not varies with instruction use
– If-then statement taken about 50% of the time
– Branches in loops taken 90% of the time
– Flag test branches taken very rarely

• Overall, 67% of conditional branches taken on average
– This is bad, because taking the branch results in the pipeline 

stall for our typical case where we are fetching subsequent 
instructions in the pipeline
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Dealing with Branches
• Several options for dealing with branches

1. Pipeline stall until branch target known (previous case we 
examined)

2. Continue fetching as if we won’t take the branch, but then 
invalidate the instructions if we do take the branch

Implementation option for DLX 24

Dealing with Branches

3. Always fetch the branch target
– After all, most branches are taken
– Can’t do in DLX because we don’t know the target 

in advance of the branch outcome
– Other architectures could precompute the target 

before the outcome
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Delayed Branch Option

4. Delayed Branch - Perform instruction 
scheduling into branch delay slots (instructions 
after a branch)

• Always execute instructions following a branch 
regardless of whether or not we take it

• Compilter will find some instructions we’ll always 
execute, regardless of whether or not we take the 
branch, and put in there

• Put a NOP if we can’t find anything
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Delayed Branch with One Delay 
Slot

Instruction in delay slot always executed
Another branch instruction not allowed to be in the delay slot
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Example: Delay Slot Scheduling

B) and C) 
execute code 
that may or may 
not be used, but 
better than a 
NOP

Form of branch 
prediction –
compiler 
predicts based 
on context
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Delay Slot Effectiveness

• Book – variations on scheme described here, branch 
nullifying if branch not taken

• On benchmarks
– Delay slot allowed branch hazards to be hidden 70% of the time
– About 20% of delay slots filled with NOPs
– Delay slots we can’t easily fill: when target is another branch

• Philosophically, delay slots good?
– No longer hides the pipeline implementation from the 

programmers (although it will if through a compiler)
– Does allow for compiler optimizations, other schemes don’t
– Not very effective with modern machines that have deep 

pipelines, too difficult to fill multiple delay slots
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Performance of Branch Schemes

• We can simulate the four schemes on DLX
• Given CPI=1 as the ideal:

– Pipeline Speedup = 

– Results: Delayed branch slightly better

PenaltyBranchFrequencyBranch
DepthPipeline
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