
2/16/2015

1

Overview of C#

Structure of a C# Program

// Specify namespaces we use classes from here

using System;

using System.Threading; // Specify more specific namespaces

namespace AppNamespace

{

// Comments that start with /// used for

// creating online documentation, like javadoc

/// <summary>

/// Summary description for Class1.

/// </summary>

class Class1

{

// .. Code for class goes here

}

}

2/16/2015

2

Defining a Class
class Class1

{

static void Main(string[] args)

{

// Your code would go here, e.g.

Console.WriteLine("hi");

}

/* We can define other methods and vars for the class */

// Constructor

Class1()

{

// Code

}

// Some method, use public, private, protected

// Use static as well just like Java

public void foo()

{

// Code

}

// Instance, Static Variables

private int m_number;

public static double m_stuff;

}

C# Basics

• C# code normally uses the file extension of “.cs”.

• Note similarities to Java
– A few little differences, e.g. “Main” instead of “main”.

• If a namespace is left out, your code is placed into the
default, global, namespace.

• The “using” directive tells C# what methods you would like
to use from that namespace.
– If we left out the “using System” statement, then we would have had

to write “System.Console.WriteLine” instead of just
“Console.WriteLine”.

• It is normal for each class to be defined in a separate file,
but you could put all the classes in one file if you wish.
– Using Visual Studio “P)roject, Add C)lass” menu option will create

separate files for your classes by default.

2/16/2015

3

Getting Help

• If MSDN is installed
– Online help resource built into Visual Studio

– Help Menu, look up C# programming language reference

– Dynamic Help

• If MSDN is not installed, you can go online to access the
references. It is accessible from:
– http://msdn.microsoft.com/library/default.asp

– Numerous tutorials, or search on keywords

Basics: Output with WriteLine

• System.Console.WriteLine() will output a string to the
console. You can use this just like Java’s
System.out.println():

System.Console.WriteLine(“hello world “ + 10/2);

will output:

hello world 5

• We can also use {0}, {1}, {2}, … etc. to indicate arguments
in the WriteLine statement to print. For example:

Console.WriteLine(“hi {0} you are {0} and your age is {1}”,
“Kenrick”, 23);

will output:
hi Kenrick you are Kenrick and your age is 23

2/16/2015

4

WriteLine Options

• There are also options to control things such as the number
of columns to use for each variable, the number of
decimals places to print, etc. For example, we could use
:C to specify the value should be displayed as currency:

Console.WriteLine(“you have {0:C} dollars.”, 1.3);

outputs as:
you have $1.30 dollars.

• See the online help or the text for more formatting options.

Data Types

• C# supports value
types and reference
types.
– Value types are

essentially the
primitive types found
in most languages, and
are stored directly on
the stack.

– Reference types are
objects and are created
on the heap.

C# Type .NET Framework type

bool System.Boolean

byte System.Byte

sbyte System.SByte

char System.Char

decimal System.Decimal

double System.Double

float System.Single

int System.Int32

uint System.UInt32

long System.Int64

ulong System.UInt64

object System.Object

short System.Int16

ushort System.UInt16

string System.String

Built-In Types

Ref

type

2/16/2015

5

Automatic Boxing/Unboxing
• Automatic boxing and unboxing allows value types can be

treated like objects.

• For example, the following public methods are defined for

Object:
Equals Overloaded. Determines whether two

Object instances are equal.

GetHashCode Serves as a hash function for a particular

type, suitable for use in hashing algorithms

and data structures like a hash table.

GetType Gets the Type of the current instance.

ToString Returns a String that represents the current

Object.

We can then write code such as:

int i;

Console.WriteLine(i.ToString());

int hash = i.GetHashCode();

This is equivalent to performing:

z = new Object(i);

Console.WriteLine(z.ToString());

First version more efficient

due to automatic

boxing at VM level

Structures
• struct is another value type

– A struct can contain constructors, constants, fields, methods,
properties, indexers, operators, and nested types.

– Declaration of a struct looks just like a declaration of a class,
except we use the keyword struct instead of class. For
example:

public struct Point {

public int x, y;

public Point(int p1, int p2) { x = p1; y = p2; }

}

• So what is the difference between a class and struct?
Unlike classes, structs can be created on the stack
without using the keyword new, e.g.:

Point p1, p2;

p1.x = 3; p1.y = 5;

• We also cannot use inheritance with structs.

2/16/2015

6

Enumeration Type

• Example:

// Enum goes outside in the class definition

enum Days {Sat, Sun, Mon, Tue, Wed, Thu, Fri};

// Inside some method

Days day1, day2;

int day3;

day1 = Days.Sat;

day2 = Days.Tue;

day3 = (int) Days.Fri;

Console.WriteLine(day1);

Console.WriteLine(day2);

Console.WriteLine(day3);

Output: Sat

Tue

6

Enumeration really

maps to Int as the

underlying data type

Strings

• The built-in string type is much like Java’s String
type.
– Note lowercase string, not String

– Concatenate using the + operator

– Just like Java, there are a variety of methods available
to:

• find the index Of matching strings or characters

• generate substrings

• compare for equality (if we use == on strings we are
comparing if the references are equal, just like Java)

• generate clones, trim, split, etc.

• See the reference for more details.

2/16/2015

7

Classes
• Basic class definition already covered

– Create an instance using “new” just like Java

• To specify inheritance use a colon after the class

name and then the base class.

– To invoke the constructor for the base class in a derived

class, we must use the keyword “base” after the

constructor in the derived class.

– We must also be explicit with virtual methods, methods

are not virtual by default as with Java

Class Example

public class BankAccount

{

public double m_amount;

BankAccount(double d) {

m_amount = d;

}

public virtual string GetInfo() {

return “Basic Account”;

}

}

public class SavingsAccount : BankAccount

{

// Savings Account derived from Bank Account

// usual inheritance of methods, variables

public double m_interest_rate;

SavingsAccount(double d) : base(100) { // $100 bonus for signup

m_interest_rate = d;

}

public override string GetInfo() {

string s = base.GetInfo();

return s + “ and Savings Account”;

}

}

2/16/2015

8

Sample Class Usage

SavingsAccount a = new SavingsAccount(0.05);

Console.WriteLine(a.m_amount);

Console.WriteLine(a.m_interest_rate);

Console.WriteLine(a.GetInfo());

Then the output is:

100

0.05

Basic Account and Savings Account

Class Notes

• We must explicitly state that a method is virtual if

we want to override it

– By default, non-virtual methods cannot be overridden

• We also have to explicitly state that we are

overriding a method with the override keyword

• To invoke a base method, use

base.methodName().

2/16/2015

9

Interfaces

• An interface in C# is much like an interface

in Java

• An interface states what an object can do,

but not how it is done.

– It looks like a class definition but we cannot

implement any methods in the interface nor

include any variables.

• Here is a sample interface:

Sample Interface

public interface IDrivable {

void Start();

void Stop();

void Turn();

}

public class SportsCar : IDriveable {

void Start() {

// Code here to implement start

}

void Stop() {

// Code here to implement stop

}

void Turn() {

// Code here to implement turn

}

}

Method that uses the Interface:

void GoForward(IDrivable d)

{

d.Start();

// wait

d.Stop();

}

2/16/2015

10

Reading Input

• To input data, we generally read it as a string and then
convert it to the desired type.
– Console.ReadLine() will return a line of input text as a string.

• We can then use type.Parse(string) to convert the string
to the desired type. For example:

string s;

int i;

s = Console.ReadLine();

i = int.Parse(s);

• we can also use double.Parse(s); float.Parse(s); etc.

• There is also a useful Convert class, with methods such
as Convert.ToDouble(val); Convert.ToBoolean(val);
Convert.ToDateTime(val); etc.

Procedural Stuff

• We also have our familiar procedural constructs:
– Arithmetic, relational, Boolean operators: all the same as

Java/C++

– For, While, Do, If : all the same as Java/C++

– Switch statements: Like Java, except forces a break after a case.
Code is not allowed to “fall through” to the next case, but several
case labels may mark the same location.

– Math class: Math.Sin(), Math.Cos(), etc.

• Random class:
Random r = new Random();

r.NextDouble(); // Returns random double 0 ≤ num < 1

r.Next(10,20); // Random int, 10  int < 20

2/16/2015

11

Passing Parameters

• Passing a value variable by default refers to

the Pass by Value behavior as in Java
 public static void foo(int a)

 {

 a=1;

 }

 static void Main(string[] args)

 {

 int x=3;

 foo(x);

 Console.WriteLine(x);

 }

This outputs the value of 3 because x is passed by value to

method foo, which gets a copy of x’s value under the variable

name of a.

Passing by Reference

• C# allows a ref keyword to pass value types

by reference:
 public static void foo(int ref a)

 {

 a=1;

 }

 static void Main(string[] args)

 {

 int x=3;

 foo(ref x);

 Console.WriteLine(x);

 }

The ref keyword must be used in both the parameter declaration

of the method and also when invoked, so it is clear what

parameters are passed by reference and may be changed.

Outputs the value of 1 since variable a in foo is really a reference

to where x is stored in Main.

2/16/2015

12

Passing Reference Variables

• If we pass a reference variable (Objects,

strings, etc.) to a method, we get the same

behavior as in Java.

• Changes to the contents of the object are

reflected in the caller, since there is only

one copy of the actual object in memory

and merely multiple references to that

object.

Passing a Reference Variable

• Consider the following:

• Output is “moo” since inside method foo, the local
reference parameter s is set to a new object in
memory with the value “cow”. The original
reference in str remains untouched.

 public static void foo(string s)

 {

 s = "cow";

 }

 static void Main(string[] args)

 {

 string str = "moo";

 foo(str);

 Console.WriteLine(str);

 }

2/16/2015

13

Passing Reference Var by Reference

• The following will change the string in the caller

• Output = “cow” since foo is passed a reference to str

 public static void foo(string ref s)

 {

 s = "cow";

 }

 static void Main(string[] args)

 {

 string str = "moo";

 foo(ref str);

 Console.WriteLine(str);

 }

Arrays

• Arrays in C# are quite similar to Java arrays.
Arrays are always created off the heap and we
have a reference to the array data. The format is
just like Java:

Type [] arrayname = new Type[size];

• For example:
int[] arr = new int[100];

• This allocates a chunk of data off the heap large
enough to store the array, and arr references this
chunk of data.

2/16/2015

14

More on Arrays

• The Length property tells us the size of an array dynamically
Console.WriteLine(arr.Length);

// Outputs 100 for above declaration

• If we want to declare a method parameter to be of type array we would
use:

public void foo(int[] data)

• To return an array we can use:
public int[] foo()

• Just like in Java, if we have two array variables and want to copy one
to the other we can’t do it with just an assignment.
– This would assign the reference, not make a copy of the array.

– To copy the array we must copy each element one at a time, or use the
Clone() method to make a copy of the data and set a new reference to it
(and garbage collect the old array values).

Multidimensional Arrays

• Two ways to declare multidimensional arrays.

• The following defines a 30 x 3 array:
int[,] arr = new int[30][3];

• Here we put a comma inside the [] to indicate two dimensions.
– This allocates a single chunk of memory of size 30*3*sizeof(int) and

creates a reference to it. We use the formulas for row major order to
access each element of the array.

• The following defines a 30 x 3 array using an array of arrays:
int[][] arr = new int[30][3];

• To an end user this looks much like the previous declaration, but
it creates an array of 30 elements, where each element is an
array of 3 elements.
– This gives us the possibility of creating ragged arrays but is slower to

access since we must dereference each array index.

– Just like Java arrays

2/16/2015

15

Related to Arrays

• Check out the List class defined in System.Collections.
– List is a class that behaves like a Java Vector/ArrayList in that it

allows dynamic allocation of elements that can be accessed like an
array or also by name using a key.

• Lastly, C# provides a foreach loop
– Foreach will loop through each element in an array or collection.

For example:

string[] arr = {"hello", "world", "foo", "abracadabra"};

foreach (string x in arr) Console.WriteLine(x);

• Will output each string in the array.

Delegates

• C# uses delegates where languages such as
C++ use function pointers.

• A delegate defines a class that describes one
or more methods.

– Another method can use this definition,
regardless of the actual code that implements it.

– C# uses this technique to pass the
EventHandlers to the system, where the event
may be handled in different ways.

2/16/2015

16

Delegates Example

// Two different methods for comparison

public static int compare1(string s1, string s2)

{

 return (s1.CompareTo(s2));

}

public static int compare2(string s1, string s2)

{

 if (s1.Length <= s2.Length) return -1;

 else return 1;

}

Compare1 uses alphabetic comparison, Compare2 uses length

Delegates Example
public delegate int CompareDelegate(string s1, string s2);

// A method that uses the delegate to find the minimum

public static string FindMin(string[] arr, CompareDelegate compare)

{

 int i, minIndex=0;

 for (i=1; i<arr.Length; i++)

 {

 if (compare(arr[minIndex],arr[i])>0) minIndex=i;

 }

 return arr[minIndex];

}

static void Main(string[] args)

{

 string[] arr = {"hello", "world", "foo", "abracadabra"};

 string s;

 Console.WriteLine(FindMin(arr, new CompareDelegate(compare1)));

 Console.WriteLine(FindMin(arr, new CompareDelegate(compare2)));

}

The output of this code is:

 abracadabra (using compare1, alphabetic compare)

 foo (using compare2, length of string compare)

2/16/2015

17

Generics

• Introduced in C# version 2.0, Generics are
based on C++ generics (of which Java 1.5
generics are also based on)

• Normally used to define generic data
structures that can be filled in at compile
time

• Example of a Stack

– Avoids a separate Int stack, String stack, etc.

Generic Stack
Class Definition

public class Stack<T>

{

T[] m_Items;

public void Push(T item)

{...}

public T Pop()

{...}

}

Usage

Stack<int> stack = new Stack<int>();

stack.Push(1);

stack.Push(2);

int number = stack.Pop();

…

Stack<string> stack =

new Stack<string>();

stack.Push("foo");

stack.Push("zot");

string s = stack.Pop();
Note auto boxing.

Also multiple types,

constraints on types

2/16/2015

18

Next Lecture

• Here we have covered all of the basic

constructs that exist in the C# language

under the Common Language Runtime!

• Next we will see how to create Windows

applications with graphical interfaces using

Windows Forms and XAML.

