Polar Coordinates and Parametric Form

Many curves with interesting and unusual appearance can be easilygenerated using polar coordinates or parametric representation offunctions. The following curves are the results of a challenge given tomy students to find interesting curves.

Spring 1996
StudentCurveTitleImage
Tripp Livingston r=cos(10^cos(t)) A Bug Image
Melissa Finkle r=(3t)/cos(t^2) Conjunction Image
Jason Barden r=cos(t^3)+sin(t^3)+tan(t^3) Look for Details Image 1 Image 2
Fall 1996
StudentCurveTitleImage
James Walton r=sin( t^(1/2) ), theta=t^2, t in [0, Pi^2] Repeating Spiral Image 1 Image 2
Bert Booker r=tan(theta^2)-sec(theta^(1/2)) Flights to Infinity Image
Michelle Abney x=sin(t)/(sin(t+w1)+s1), y=cos(t)/(cos(t+w2)+s2) Deflated Balls Image 1 Image 2 Image 3
Spring 1997
StudentCurveTitleImage
Unknown r=sin(4t)*sin(Pi*t) Insect Wings Image
Danny Bowen x=sin(t)*|(cos(0.625t))^(1/2)|, y=sin(t)*|(sin(0.625t))^(1/2)| Batman Image
Paul Danker r=Arcsin(cos(cos(sin(sin(3^(2-cos(t-1.6))))))) Tiger Head Image
Fall 2003
StudentCurveTitleImage
Saloua Bakkali,
Nick Beasley,
Cara Mulcahy,
Dayna Rumfelt,
Joe Steward
r=k tan(k t) Crosses Image 1 Image 2
r=|log(ln(tan(cos^5(sin^2(t)))))|, t in [0,2pi] Untitled Image
r=-1+t+cos(t)+cos(t^2)+cos(t^3), t in [0,3pi] Aurora Image
x=sin(9t+8), y=cos^2(7t), t in [0,2pi] Weave Image
r=Arctan(t^tan(t^Arctan(t))), t in [0,6.65] Fan Image
Fall 2004
StudentCurveTitleImage
Heidi Armstrong r=sin(9t), r=-2-sin(t) Tomato Image
Fall 2005
StudentCurveTitleImage
John Buckland x=cos(3t/4)^3, y=-cos t, 2<t<10.5 Heart Image
x=2.9(sin(2t)+cos(8t)), y=(sin(8t)+cos(2t))^3 Bird Image
Matt Gillman r=sin(2cos(cosh(cos t))/(sinh(sin t)) Funny Face Image
Eric Ottosen x=4.2cos t+0.2cos(2^(n+2) pi/0.2 t), y=4sin t+0.2sin(2^(n+2) pi/0.2 t), 0<t<2pi, n=-4,..,2 Ring of Fire Image
Spring 2011
StudentCurveTitleImage
Christopher Gardinerr=tan(t/arctan(t))^(1/n), n in [1,infinity)Ring of Fire 2Image
Jeremy Luchakr=ąsin(cos(4/(t+Pi/2)^2))^2Vertical Yin YangImage
William Ruzickar=arctan(t)^2/77-cos(t)^2Infinifty Over the FiniteImage
Spring 2012
StudentCurveTitleImage
Cody McWilliamsr=1/2; r=1/2+4cos^6 tBowtieImage
Janine Rayr=sin^6(6t)+sin^5(5t)+sin^4(4t)+sin^3(3t)+sin^2(2t)+sin(t)MooseImage
Salome Hussein Scott(tan(cos(3t)), tan(cos(3.1t)+sin(3t))Wings in FlightImage