A New Class of Non-Linear Stability Preserving Operators

Lukasz Grabarek

Department of Mathematics

University of Hawai'i at Mānoa

lukasz@math.hawaii.edu

18th ICFIDCAA, 13-17 August, 2010

4 D K 4 B K 4 B K 4

Background Current Research The Laguerre-Polya Class Stability Preserving Operations and Operators

The Laguerre-Pólya Class

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

크

The Laguerre-Pólya Class

Functions in the Laguerre-Pólya class, denoted \mathscr{L} - \mathscr{P} , are uniform limits of polynomials, on compact subsets of \mathbb{C} , all of whose zeros are real, and only the functions in the Laguerre-Pólya class enjoy this property.

Background Current Research

The Laguerre-Pólya Class

Functions in the Laguerre-Pólya class, denoted \mathscr{L} - \mathscr{P} , are uniform limits of polynomials, on compact subsets of \mathbb{C} , all of whose zeros are real, and only the functions in the Laguerre-Pólya class enjoy this property.

Background

Theorem (Pólya-Schur, 1914) $\varphi(x) = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} x^k \in \mathscr{L} \cdot \mathscr{P} \text{ if and only if}$ $\varphi(x) = c x^m e^{-\alpha x^2 + \beta x} \prod_{k=1}^{\infty} \left(1 + \frac{x}{x_k}\right) e^{-\frac{x}{x_k}},$ where $m \in \mathbb{N}, \alpha, \beta, c, x_k \in \mathbb{R}, \alpha \ge 0$, and $\sum_{j=0}^{\infty} \frac{1}{x_k^2} < \infty$.

A restriction to real negative zeros.

 \mathscr{L} - \mathscr{P}^+ consists of precisely those $\varphi(x) \in \mathscr{L}$ - \mathscr{P} whose Taylor coefficients are non-negative. Functions belonging to this subclass of \mathscr{L} - \mathscr{P} are the uniform limits, on compact subsets of \mathbb{C} , of polynomials all of whose zeros are real and negative.

Background

< ロ > < 同 > < 回 > < 回 >

A restriction to real negative zeros.

 \mathscr{L} - \mathscr{P}^+ consists of precisely those $\varphi(x) \in \mathscr{L}$ - \mathscr{P} whose Taylor coefficients are non-negative. Functions belonging to this subclass of \mathscr{L} - \mathscr{P} are the uniform limits, on compact subsets of \mathbb{C} , of polynomials all of whose zeros are real and negative.

Background

Theorem (Pólya-Schur, 1914)

 $\varphi(\mathbf{x}) \in \mathscr{L}\text{-}\mathscr{P}^+$ if and only if

$$\varphi(x) = c x^m e^{\sigma x} \prod_{k=1}^{\infty} \left(1 + \frac{x}{x_k} \right)$$

where $m \in \mathbb{N}$, σ , c, $x_k \in \mathbb{R}$, σ , $c \ge 0$, $x_k > 0$, and $\sum_{j=0}^{\infty} \frac{1}{x_k} < \infty$.

Background The Laguerre-Polya Class Current Research Stability Preserving Operations and Operato

Properties of the Laguerre-Pólya class

If $\psi(x) = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} x^k \in \mathscr{L}$, then the *Laguerre inequalities* hold: $(\psi^{(p)}(x))^2 - \psi^{(p-1)}(x)\psi^{(p+1)}(x) \ge 0$ for each p = 1, 2, ..., and all $x \in \mathbb{R}$.

< 口 > < 同 > < 回 > < 回 > .

Properties of the Laguerre-Pólya class

If $\psi(x) = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} x^k \in \mathscr{L}$, then the *Laguerre inequalities* hold: $(\psi^{(p)}(x))^2 - \psi^{(p-1)}(x)\psi^{(p+1)}(x) \ge 0$ for each p = 1, 2, ..., and all $x \in \mathbb{R}$.

Theorem (Craven, Csordas, Patrick, Varga)

Let $\psi(x) = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} x^k$ be a real entire function and define

$$L_{p}(\psi(x)) := \sum_{j=0}^{2p} \frac{(-1)^{p+j}}{(2p)!} {2p \choose j} \psi^{(j)}(x) \psi^{(2p-j)}(x) \; ,$$

where $x \in \mathbb{R}$ and p = 0, 1, 2, Then $\psi(x) \in \mathscr{L}$ - \mathscr{P} if and only if for all $x \in \mathbb{R}$ and all p = 0, 1, 2, ...

$$L_{
ho}(\psi(x)) \geq 0$$
.

< ロ > < 同 > < 三 > < 三 > -

Background Current Research The Laguerre-Polya Class Stability Preserving Operations and Operators

٠

Hadamard Composition

Let
$$\varphi(x) = \sum_{k=0}^{\infty} a_k x^k \in \mathscr{L}\text{-}\mathscr{P}, \ \psi(x) = \sum_{k=0}^{\infty} b_k x^k \in \mathscr{L}\text{-}\mathscr{P}^+$$

Hadamard composition

Background Current Research

The Laguerre-Polya Class Stability Preserving Operations and Operators

٠

Hadamard Composition

Let
$$\varphi(x) = \sum_{k=0}^{\infty} a_k x^k \in \mathscr{L}\text{-}\mathscr{P}, \ \psi(x) = \sum_{k=0}^{\infty} b_k x^k \in \mathscr{L}\text{-}\mathscr{P}^+$$

• Hadamard composition

$$arphi * \psi(\mathbf{x}) := \sum_{k=0}^{\infty} a_k b_k \mathbf{x}^k \in \mathscr{L}\text{-}\mathscr{P}$$

The Laguerre-Polya Class Stability Preserving Operations and Operators

Hadamard Composition

Let
$$\varphi(x) = \sum_{k=0}^{\infty} a_k x^k \in \mathscr{L}\text{-}\mathscr{P}, \ \psi(x) = \sum_{k=0}^{\infty} b_k x^k \in \mathscr{L}\text{-}\mathscr{P}^+$$

Background Current Research

• Hadamard composition

$$\varphi * \psi(\mathbf{x}) := \sum_{k=0}^{\infty} a_k b_k \mathbf{x}^k \in \mathscr{L}$$
- \mathscr{P}

Example (A non-linear operator acting on the coefficients)

Let $\varphi(x) = \sum_{k=0}^{\infty} a_k x^k \in \mathscr{L} - \mathscr{P}^+$. The Hadamard composition is a linear operation, but we may regard $\varphi * \varphi(x) = \sum_{k=0}^{\infty} a_k^2 x^k \in \mathscr{L} - \mathscr{P}^+$ as the image of φ under the non-linear operator $a_k \mapsto a_k^2$, acting on the coefficients.

The Laguerre-Polya Class Stability Preserving Operations and Operators

Hadamard Composition

Let
$$\varphi(x) = \sum_{k=0}^{\infty} a_k x^k \in \mathscr{L}\text{-}\mathscr{P}, \ \psi(x) = \sum_{k=0}^{\infty} b_k x^k \in \mathscr{L}\text{-}\mathscr{P}^+$$

Background

• Hadamard composition

$$\varphi * \psi(\mathbf{x}) := \sum_{k=0}^{\infty} a_k b_k \mathbf{x}^k \in \mathscr{L}$$
- \mathscr{P}

Example (A non-linear operator acting on the coefficients)

Let $\varphi(x) = \sum_{k=0}^{\infty} a_k x^k \in \mathscr{L} - \mathscr{P}^+$. The Hadamard composition is a linear operation, but we may regard $\varphi * \varphi(x) = \sum_{k=0}^{\infty} a_k^2 x^k \in \mathscr{L} - \mathscr{P}^+$ as the image of φ under the non-linear operator $a_k \mapsto a_k^2$, acting on the coefficients.

Are there other such non-linear operators?

< ロ > < 同 > < 回 > < 回 >

The Laguerre-Polya Class Stability Preserving Operations and Operators

Hadamard Composition

Let
$$\varphi(x) = \sum_{k=0}^{\infty} a_k x^k \in \mathscr{L}\text{-}\mathscr{P}, \ \psi(x) = \sum_{k=0}^{\infty} b_k x^k \in \mathscr{L}\text{-}\mathscr{P}^+$$

Background

• Hadamard composition

$$\varphi * \psi(\mathbf{x}) := \sum_{k=0}^{\infty} a_k b_k \mathbf{x}^k \in \mathscr{L}\text{-}\mathscr{P}$$

Example (A non-linear operator acting on the coefficients)

Let $\varphi(x) = \sum_{k=0}^{\infty} a_k x^k \in \mathscr{L} - \mathscr{P}^+$. The Hadamard composition is a linear operation, but we may regard $\varphi * \varphi(x) = \sum_{k=0}^{\infty} a_k^2 x^k \in \mathscr{L} - \mathscr{P}^+$ as the image of φ under the non-linear operator $a_k \mapsto a_k^2$, acting on the coefficients.

- Are there other such non-linear operators?
- Can we characterize them?

Historical Background Non-linear stability preserving operators

Iterated Turán inequalities

Problem (Craven, Csordas, 1989)

Classify the functions

$$\psi(\mathbf{x}) = \sum_{k=1}^{\omega} \frac{\gamma_k}{k!} \mathbf{x}^k \in \mathscr{L} \cdot \mathscr{P} ,$$

where $\gamma_k \ge 0$ and $0 \le \omega \le \infty$, for which the functions

$$f(x) := \sum_{k=0}^{\infty} \frac{\gamma_k^2 - \gamma_{k-1}\gamma_{k+1}}{k!} x^k \in \mathscr{L} \text{-} \mathscr{P} .$$

A conjecture of Stanley, McNamara-Sagan, Fisk

Theorem (Brändén, 2009)

If the zeros of the real polynomial $\psi(x) = \sum_{k=0}^{n} a_k z^k$ are all real and negative, then the zeros of the polynomial

$$\sum_{k=0}^{n} (a_k^2 - a_{k-1}a_{k+1}) z^k$$
, where $a_{-1} := 0$ and $a_{n+1} := 0$.

are all real and negative.

A conjecture of Stanley, McNamara-Sagan, Fisk

Theorem (Brändén, 2009)

If the zeros of the real polynomial $\psi(x) = \sum_{k=0}^{n} a_k z^k$ are all real and negative, then the zeros of the polynomial

$$\sum_{k=0}^{n} (a_k^2 - a_{k-1}a_{k+1}) z^k$$
, where $a_{-1} := 0$ and $a_{n+1} := 0$.

are all real and negative.

Extends to transcendental entire function in L-P⁺.

Current Research A conjecture of Stanley, McNamara-Sagan, Fisk

Theorem (Brändén, 2009)

If the zeros of the real polynomial $\psi(x) = \sum_{k=0}^{n} a_k z^k$ are all real and negative, then the zeros of the polynomial

$$\sum_{k=0}^{n} (a_k^2 - a_{k-1}a_{k+1}) z^k$$
 , where $a_{-1} := 0$ and $a_{n+1} := 0$.

are all real and negative.

Extends to transcendental entire function in L-P⁺.

• $a_k \mapsto a_k^2 - a_{k-1}a_{k+1}$ is a non-linear stability preserving operator.

< ロ > < 同 > < 三 > < 三 > -

Historical Background Non-linear stability preserving operators

A conjecture of Stanley, McNamara-Sagan, Fisk

Theorem (Brändén, 2009)

If the zeros of the real polynomial $\psi(x) = \sum_{k=0}^{n} a_k z^k$ are all real and negative, then the zeros of the polynomial

$$\sum_{k=0}^{n} (a_k^2 - a_{k-1}a_{k+1}) z^k$$
, where $a_{-1} := 0$ and $a_{n+1} := 0$.

are all real and negative.

- Extends to transcendental entire function in L-P⁺.
- *a_k* → *a²_k* − *a_{k-1} a_{k+1}* is a non-linear stability preserving operator.
 (?)

< 口 > < 同 > < 回 > < 回 > .

Background Current Research Historical Background Non-linear stability preserving operators

An extension

イロト イヨト イヨト イヨト

An extension

• Let $\psi = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} x^k$ be an entire function and compute

$$\sum_{j=0}^{2p} \frac{(-1)^{p+j}}{(2p)!} \binom{2p}{j} \psi^{(j)}(x) \psi^{(2p-j)}(x) \; .$$

< ロ > < 同 > < 三 > < 三 > 、

An extension

• Let $\psi = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} x^k$ be an entire function and compute

$$\sum_{j=0}^{2p} \frac{(-1)^{p+j}}{(2p)!} \binom{2p}{j} \psi^{(j)}(x) \psi^{(2p-j)}(x) \; .$$

• Evaluating at *x* = 0 we obtain:

イロト イヨト イヨト イヨト

An extension

• Let $\psi = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} x^k$ be an entire function and compute

$$\sum_{j=0}^{2p} \frac{(-1)^{p+j}}{(2p)!} \binom{2p}{j} \psi^{(j)}(x) \psi^{(2p-j)}(x) \; .$$

- Evaluating at *x* = 0 we obtain:
 - (p=0) γ₀² ,

イロト イヨト イヨト イヨト

An extension

• Let $\psi = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} x^k$ be an entire function and compute

$$\sum_{j=0}^{2p} \frac{(-1)^{p+j}}{(2p)!} \binom{2p}{j} \psi^{(j)}(x) \psi^{(2p-j)}(x) \; .$$

• Evaluating at *x* = 0 we obtain:

< ロ > < 同 > < 三 > < 三 > -

An extension

• Let $\psi = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} x^k$ be an entire function and compute

$$\sum_{j=0}^{2p} \frac{(-1)^{p+j}}{(2p)!} \binom{2p}{j} \psi^{(j)}(x) \psi^{(2p-j)}(x) \; .$$

• Evaluating at *x* = 0 we obtain:

• (p=0)
$$\gamma_0^2$$
,
• (p=1) $\gamma_1^2 - \gamma_0 \gamma_2$,
• (p=2) $\frac{1}{4}\gamma_2^2 - \frac{1}{3}\gamma_1 \gamma_2 + \gamma_0 \gamma_6$, etc.

< 口 > < 同 > < 回 > < 回 > .

An extension

• Let $\psi = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} x^k$ be an entire function and compute

$$\sum_{j=0}^{2p} \frac{(-1)^{p+j}}{(2p)!} \binom{2p}{j} \psi^{(j)}(x) \psi^{(2p-j)}(x) \; .$$

• Evaluating at *x* = 0 we obtain:

(p=0) γ₀²

• (p=1)
$$\gamma_1^2 - \gamma_0 \gamma_2$$
,

• (p=2)
$$\frac{1}{4}\gamma_2^2 - \frac{1}{3}\gamma_1\gamma_2 + \gamma_0\gamma_6$$
, etc.

 Shift indices and set γ_k = 0, whenever the index does not make sense. In general, for positive integers p

$$\frac{(2p)!}{2} L_p\left(\psi^{(k)}(x)\right)\Big|_{x=0} = \binom{2p-1}{p}\gamma_{k+p}^2 + \sum_{j=1}^p (-1)^j \binom{2p}{p-j}\gamma_{k+p-j}\gamma_{k+p+j} .$$

An extension

Theorem (Grabarek, 2010)

Let $\psi(z) = \sum_{k=0}^{n} a_k z^k = \prod_{k=1}^{n} (1 + \rho_k z)$, where $\rho_k > 0$ for $1 \le k \le n$, be a real polynomial with all real negative zeros. Let p be a positive integer and let L_k^p be the non-linear operator

$$a_k\mapsto {2p-1\choose p}a_k^2+\sum_{j=1}^p(-1)^j{2p\choose p-j}a_{k-j}a_{k+j}$$

Then, the zeros of the polynomial

$$L_k^p[\psi(z)] = \sum_{k=0}^n L_k^p z^k$$

are all real and negative.

Background Current Research Historical Background Non-linear stability preserving operators

Remarks and Further Direction

 The non-linear operator L^p_k is derived from the system of inequalities that generalize the Laguerre-Pólya class.

• • • • • • • • • • • • •

- The non-linear operator L^p_k is derived from the system of inequalities that generalize the Laguerre-Pólya class.
 - $L_k^0: a_k \mapsto a_k^2$ (Hadamard)

- The non-linear operator L_k^p is derived from the system of inequalities that generalize the Laguerre-Pólya class.

 - $L_k^0 : a_k \mapsto a_k^2$ (Hadamard) $L_k^1 : a_k \mapsto a_k^2 a_{k-1}a_{k+1}$ (Brändén)

- The non-linear operator L_k^p is derived from the system of inequalities that generalize the Laguerre-Pólya class.
 - $L_k^0: a_k \mapsto a_k^2$ (Hadamard)
 - $L_k^{\hat{1}}: a_k \mapsto a_k^2 a_{k-1}a_{k+1}$ (Brändén)
 - $L_k^2: a_k \mapsto 3a_k^2 4a_{k-1}a_{k+1} + a_{k-2}a_{k+2}$, etc.

→ Ξ →

- The non-linear operator L_k^p is derived from the system of inequalities that generalize the Laguerre-Pólya class.
 - $L_k^0: a_k \mapsto a_k^2$ (Hadamard)
 - $L_k^1 : a_k \mapsto a_k^2 a_{k-1}a_{k+1}$ (Brändén)
 - $L_k^2: a_k \mapsto 3a_k^2 4a_{k-1}a_{k+1} + a_{k-2}a_{k+2}$, etc.
- Theorem extends to transcendental functions in \mathcal{L} - \mathcal{P}^+ .

< 回 ト < 三 ト < 三

• The non-linear operator L_k^p is derived from the system of inequalities that generalize the Laguerre-Pólya class.

Background

- $L_k^0: a_k \mapsto a_k^2$ (Hadamard)
- $L_k^{\uparrow}: a_k \mapsto a_k^2 a_{k-1}a_{k+1}$ (Brändén)
- $L_k^2: a_k \mapsto 3a_k^2 4a_{k-1}a_{k+1} + a_{k-2}a_{k+2}$, etc.
- Theorem extends to transcendental functions in \mathcal{L} - \mathcal{P}^+ .
- Theorem does not extend to \mathscr{L} - \mathscr{P} , rather to the closed left half-plane.

• The non-linear operator L_k^p is derived from the system of inequalities that generalize the Laguerre-Pólya class.

Background

- $L_k^0: a_k \mapsto a_k^2$ (Hadamard)
- $L_k^{\uparrow}: a_k \mapsto a_k^2 a_{k-1}a_{k+1}$ (Brändén)
- L_k^2 : $a_k \mapsto 3a_k^2 4a_{k-1}a_{k+1} + a_{k-2}a_{k+2}$, etc.
- Theorem extends to transcendental functions in \mathcal{L} - \mathcal{P}^+ .
- Theorem does not extend to \mathscr{L} - \mathscr{P} , rather to the closed left half-plane.
 - The non-linear operators L_k^p are (weakly) Hurwitz stable.

• The non-linear operator L_k^p is derived from the system of inequalities that generalize the Laguerre-Pólya class.

Background

- $L_k^0: a_k \mapsto a_k^2$ (Hadamard)
- $L_k^{\uparrow}: a_k \mapsto a_k^2 a_{k-1}a_{k+1}$ (Brändén)
- L_k^2 : $a_k \mapsto 3a_k^2 4a_{k-1}a_{k+1} + a_{k-2}a_{k+2}$, etc.
- Theorem extends to transcendental functions in \mathcal{L} - \mathcal{P}^+ .
- Theorem does not extend to *L*-*P*, rather to the closed left half-plane.
 - The non-linear operators L_k^{ρ} are (weakly) Hurwitz stable. (?)

• The non-linear operator L_k^p is derived from the system of inequalities that generalize the Laguerre-Pólya class.

Background

- $L_k^0: a_k \mapsto a_k^2$ (Hadamard)
- $L_k^{\uparrow}: a_k \mapsto a_k^2 a_{k-1}a_{k+1}$ (Brändén)
- $L_k^2: a_k \mapsto 3a_k^2 4a_{k-1}a_{k+1} + a_{k-2}a_{k+2}$, etc.
- Theorem extends to transcendental functions in \mathcal{L} - \mathcal{P}^+ .
- Theorem does not extend to \mathscr{L} - \mathscr{P} , rather to the closed left half-plane.
 - The non-linear operators L_k^{ρ} are (weakly) Hurwitz stable. (?)
 - Use the complex version of the Laguerre inequalities

$$|f'(z)|^2 \geq \Re\{f(z)\overline{f''(z)}\}$$
.

Remarks and Further Direction

 In the proof of the Theorem, the reality of zeros of L^p_k [ψ(z)], for each positive integer p, depends on the reality of zeros of the polynomial

$$Q_n^p(z) := \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{S(p,k)}{2} {n \choose 2k} z^k \text{, where } S(p,k) = \frac{{\binom{2p}{p}} {\binom{2k}{k}}}{{\binom{p+k}{p}}}$$

Remarks and Further Direction

 In the proof of the Theorem, the reality of zeros of L^p_k [ψ(z)], for each positive integer p, depends on the reality of zeros of the polynomial

$$Q_n^p(z) := \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{S(p,k)}{2} {n \choose 2k} z^k \text{, where } S(p,k) = \frac{{\binom{2p}{p}}{\binom{2k}{k}}}{{\binom{p+k}{p}}}$$

• Study the non-linear operator $a_k \mapsto \mu_0 a_k^2 + \mu_2 a_{k-1} a_{k+1}$.

Remarks and Further Direction

 In the proof of the Theorem, the reality of zeros of L^p_k [ψ(z)], for each positive integer p, depends on the reality of zeros of the polynomial

$$Q_n^p(z) := \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{S(p,k)}{2} {n \choose 2k} z^k \text{, where } S(p,k) = \frac{{\binom{2p}{p}}{\binom{2k}{k}}}{{\binom{p+k}{p}}}$$

- Study the non-linear operator $a_k \mapsto \mu_0 a_k^2 + \mu_2 a_{k-1} a_{k+1}$.
- The polynomial $Q_n^p(z)$ becomes

$$\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{S(1,k)}{2} \binom{n}{2k} (k\mu_2 + \mu_0) z^k .$$

Remarks and Further Direction

 In the proof of the Theorem, the reality of zeros of L^p_k [ψ(z)], for each positive integer p, depends on the reality of zeros of the polynomial

$$Q_n^p(z) := \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{S(p,k)}{2} {n \choose 2k} z^k \text{, where } S(p,k) = \frac{{\binom{2p}{p}}{\binom{2k}{k}}}{{\binom{p+k}{p}}}$$

- Study the non-linear operator $a_k \mapsto \mu_0 a_k^2 + \mu_2 a_{k-1} a_{k+1}$.
- The polynomial $Q_n^p(z)$ becomes

$$\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{S(1,k)}{2} \binom{n}{2k} (k\mu_2 + \mu_0) z^k .$$

• Use *multiplier sequences* and *complex zero decreasing sequences* to obtain further properties.

Historical Background Non-linear stability preserving operators

Coefficient Bounds

Corollary (Grabarek)

The non-linear operator $a_k \mapsto \mu_0 a_k^2 + \mu_2 a_{k-1} a_{k+1}$ preserves \mathscr{L} - \mathscr{P}^+ , provided that either

Corollary (Grabarek)

The non-linear operator $a_k \mapsto \mu_0 a_k^2 + \mu_2 a_{k-1} a_{k+1}$ preserves \mathscr{L} - \mathscr{P}^+ , provided that either

①
$$\mu_{0}
eq 0, \mu_{0} > 0$$
, and $\mu_{0} + \mu_{2} > 0$, or

Corollary (Grabarek)

The non-linear operator $a_k \mapsto \mu_0 a_k^2 + \mu_2 a_{k-1} a_{k+1}$ preserves \mathscr{L} - \mathscr{P}^+ , provided that either

- $\mu_0 \neq 0, \mu_0 > 0$, and $\mu_0 + \mu_2 > 0$, or
- 2) $\mu_0 \neq 0, \mu_0 < 0$, and $\mu_0 + \mu_2 < 0$, or

Corollary (Grabarek)

The non-linear operator $a_k \mapsto \mu_0 a_k^2 + \mu_2 a_{k-1} a_{k+1}$ preserves \mathscr{L} - \mathscr{P}^+ , provided that either

①
$$\mu_{0}
eq \mathsf{0}, \mu_{\mathsf{0}} > \mathsf{0}$$
, and $\mu_{\mathsf{0}} + \mu_{\mathsf{2}} > \mathsf{0}$, or

②
$$\mu_0
eq 0, \mu_0 < 0$$
, and $\mu_0 + \mu_2 < 0$, or

o exactly one of μ_0, μ_2 is zero.

Corollary (Grabarek)

The non-linear operator $a_k \mapsto \mu_0 a_k^2 + \mu_2 a_{k-1} a_{k+1}$ preserves \mathscr{L} - \mathscr{P}^+ , provided that either

①
$$\mu_{0}
eq \mathsf{0}, \mu_{\mathsf{0}} > \mathsf{0}$$
, and $\mu_{\mathsf{0}} + \mu_{\mathsf{2}} > \mathsf{0}$, or

2)
$$\mu_{0}
eq \mathsf{0}, \mu_{\mathsf{0}} < \mathsf{0}$$
, and $\mu_{\mathsf{0}} + \mu_{\mathsf{2}} < \mathsf{0}$, or

• exactly one of μ_0, μ_2 is zero.

• We could also have used hypergeometric polynomials:

$$\sum_{k=0}^{\left\lfloor rac{n}{2}
ight
ceil} rac{S(1,k)}{2} inom{n}{2k} (k\mu_2+\mu_0) z^k =$$

Corollary (Grabarek)

The non-linear operator $a_k \mapsto \mu_0 a_k^2 + \mu_2 a_{k-1} a_{k+1}$ preserves \mathscr{L} - \mathscr{P}^+ , provided that either

①
$$\mu_{0}
eq \mathsf{0}, \mu_{\mathsf{0}} > \mathsf{0}$$
, and $\mu_{\mathsf{0}} + \mu_{\mathsf{2}} > \mathsf{0}$, or

2)
$$\mu_{0}
eq \mathsf{0}, \mu_{\mathsf{0}} < \mathsf{0}$$
, and $\mu_{\mathsf{0}} + \mu_{\mathsf{2}} < \mathsf{0}$, or

• exactly one of μ_0, μ_2 is zero.

• We could also have used hypergeometric polynomials:

$$\sum_{k=0}^{\left\lfloorrac{n}{2}
ight
floor}rac{S(1,k)}{2}inom{n}{2k}(k\mu_2+\mu_0)z^k=$$

$$z \cdot \frac{\mu_2}{2} n(n-1) {}_2F_1\left(\frac{3}{2} - \frac{n}{2}, 1 - \frac{n}{2}; 3; 4z\right) + \mu_0 {}_2F_1\left(\frac{1}{2} - \frac{n}{2}, -\frac{n}{2}; 2; 4z\right)$$

Background	Historical Background
Current Research	Non-linear stability preserving operators

・ロト・西ト・ヨト・ヨー うへの

- Background
 Historical Background

 Current Research
 Non-linear stability preserving operators
- Classify the coefficients μ₀, μ₂, ..., μ_{2p-2} for which the non-linear operator L^p_k preserves L-P⁺, or the reality of zeros.

- Background
 Historical Background

 Current Research
 Non-linear stability preserving operators
- Classify the coefficients μ₀, μ₂, ..., μ_{2p-2} for which the non-linear operator L^p_k preserves L-P⁺, or the reality of zeros.
- Use hypergeometric polynomials, rather than complex zero decreasing sequences.

- Background
 Historical Background

 Current Research
 Non-linear stability preserving operators
- Classify the coefficients μ₀, μ₂, ..., μ_{2p-2} for which the non-linear operator L^p_k preserves L-P⁺, or the reality of zeros.
- Use hypergeometric polynomials, rather than complex zero decreasing sequences.
 - The zeros of

$$_{2}F_{1}\left(-\frac{n}{2},\frac{1-n}{2};p+1;4z\right)$$

are real and negative for any positive integer p and a fixed positive integer n (cf. K. Driver and K. Jordaan).

 Background
 Historical Background

 Current Research
 Non-linear stability preserving operators

- Classify the coefficients μ₀, μ₂, ..., μ_{2p-2} for which the non-linear operator L^p_k preserves L-P⁺, or the reality of zeros.
- Use hypergeometric polynomials, rather than complex zero decreasing sequences.
 - The zeros of

$$_{2}F_{1}\left(-\frac{n}{2},\frac{1-n}{2};p+1;4z\right)$$

are real and negative for any positive integer p and a fixed positive integer n (cf. K. Driver and K. Jordaan).

• Use contiguous function relations and/or the differential operator $\theta = z \frac{d}{dz}$.

 Background
 Historical Background

 Current Research
 Non-linear stability preserving operators

- Classify the coefficients μ₀, μ₂, ..., μ_{2p-2} for which the non-linear operator L^p_k preserves L-P⁺, or the reality of zeros.
- Use hypergeometric polynomials, rather than complex zero decreasing sequences.
 - The zeros of

$$_{2}F_{1}\left(-\frac{n}{2},\frac{1-n}{2};p+1;4z\right)$$

are real and negative for any positive integer p and a fixed positive integer n (cf. K. Driver and K. Jordaan).

- Use contiguous function relations and/or the differential operator $\theta = z \frac{d}{dz}$.
- Iterates of

$$\mu \rightarrow {}_{2}F_{1}\left(-\frac{n}{2}+\mu,\frac{1-n}{2}+\mu;p+1;4z\right)$$

(notation of D. Karp) arise in the polynomials associated with L_k^p for $p \ge 2$.

Finally, regarding the non-linear operator $S_r : a_k \mapsto a_k^2 - a_{k-r}a_{k+r}$, we know from R. Yoshida's work that S_6 does not preserve \mathscr{L} - \mathscr{P}^+ . However, we know that L_k^p does preserve \mathscr{L} - \mathscr{P}^+ for all positive integers p. We make the observation that

Finally, regarding the non-linear operator $S_r : a_k \mapsto a_k^2 - a_{k-r}a_{k+r}$, we know from R. Yoshida's work that S_6 does not preserve \mathscr{L} - \mathscr{P}^+ . However, we know that L_k^p does preserve \mathscr{L} - \mathscr{P}^+ for all positive integers p. We make the observation that

$$L_k^p = \sum_{j=1}^p (-1)^{j+1} {2p \choose p-j} (a_k^2 - a_{k-j}a_{k+j}) ,$$

A (10) A (10) A (10)

Finally, regarding the non-linear operator $S_r : a_k \mapsto a_k^2 - a_{k-r}a_{k+r}$, we know from R. Yoshida's work that S_6 does not preserve \mathscr{L} - \mathscr{P}^+ . However, we know that L_k^p does preserve \mathscr{L} - \mathscr{P}^+ for all positive integers p. We make the observation that

$$L_k^p = \sum_{j=1}^p (-1)^{j+1} {\binom{2p}{p-j}} (a_k^2 - a_{k-j}a_{k+j}),$$

and ask what is happening here?

医肾管医肾管

Stay tuned for the 19th ICFIDCAA !

イロト イヨト イヨト イヨト

크