A New Class of Non-Linear Stability Preserving Operators

Lukasz Grabarek

Department of Mathematics University of Hawai'i at Mānoa

lukasz@math.hawaii.edu

18th ICFIDCAA, 13-17 August, 2010

4 m k

ALCOHOL: YES

つへへ

[Background](#page-1-0) [Current Research](#page-13-0) [The Laguerre-Polya Class](#page-3-0) [Stability Preserving Operations and Operators](#page-8-0)

The Laguerre-Pólya Class

イロト イ押ト イヨト イヨト

 299

活

The Laguerre-Pólya Class

Functions in the Laguerre-Pólya class, denoted \mathscr{L} - \mathscr{P} , are uniform limits of polynomials, on compact subsets of \mathbb{C} , all of whose zeros are real, and only the functions in the Laguerre-Pólya class enjoy this property.

[Background](#page-1-0) [Current Research](#page-13-0)

イロト イ押 トイヨ トイヨ

The Laguerre-Pólya Class

Functions in the Laguerre-Pólya class, denoted \mathscr{L} - \mathscr{P} , are uniform limits of polynomials, on compact subsets of \mathbb{C} , all of whose zeros are real, and only the functions in the Laguerre-Pólya class enjoy this property.

[Background](#page-1-0) [Current Research](#page-13-0)

Theorem (Pólya-Schur, 1914) $\varphi(x) = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} x^k \in \mathscr{L} \text{-} \mathscr{P}$ *if and only if* $\varphi(x) = cx^m e^{-\alpha x^2 + \beta x} \prod^{\infty}$ *k*=1 $\left(1+\frac{x}{x}\right)$ *xk* $e^{-\frac{x}{x_k}}$ *where m* \in N, α , β , c , x_k \in R, $\alpha \geq 0$, and $\sum_{j=0}^{\infty} \frac{1}{x_k^2}$ $< \infty$. *k*

K ロ ⊁ K 倒 ≯ K 君 ⊁ K 君 ⊁

A restriction to real negative zeros.

 \mathscr{L} - \mathscr{P}^+ consists of precisely those $\varphi(x) \in \mathscr{L}$ - \mathscr{P} whose Taylor coefficients are non-negative. Functions belonging to this subclass of \mathscr{L} - \mathscr{P} are the uniform limits, on compact subsets of \mathbb{C} , of polynomials all of whose zeros are real and negative.

[Background](#page-1-0) [Current Research](#page-13-0)

イロト イ押 トイヨ トイヨ

A restriction to real negative zeros.

 \mathscr{L} - \mathscr{P}^+ consists of precisely those $\varphi(x) \in \mathscr{L}$ - \mathscr{P} whose Taylor coefficients are non-negative. Functions belonging to this subclass of \mathscr{L} - \mathscr{P} are the uniform limits, on compact subsets of \mathbb{C} , of polynomials all of whose zeros are real and negative.

[Background](#page-1-0) [Current Research](#page-13-0)

Theorem (Pólya-Schur, 1914)

 φ (*x*) ∈ \mathscr{L} - \mathscr{P}^+ *if and only if*

$$
\varphi(x) = cx^m e^{\sigma x} \prod_{k=1}^{\infty} \left(1 + \frac{x}{x_k}\right) ,
$$

 $where m \in \mathbb{N}, \sigma, c, x_k \in \mathbb{R}, \sigma, c \ge 0, x_k > 0, and \sum_{j=0}^{\infty} \frac{1}{x_k} < \infty.$

イロト イ母 トイヨ トイヨ トー

Properties of the Laguerre-Pólya class

If $\psi(x) = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} x^k \in \mathscr{L} \cdot \mathscr{P}$, then the *Laguerre inequalities* hold: $(\psi^{(\rho)}(x))^2-\psi^{(\rho-1)}(x)\psi^{(\rho+1)}(x)\geq 0$ for each $\rho=1,2,\ldots$, and all $x \in \mathbb{R}$.

イロト イ母 トイヨ トイヨ トー

Properties of the Laguerre-Pólya class

If $\psi(x) = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} x^k \in \mathscr{L} \cdot \mathscr{P}$, then the *Laguerre inequalities* hold: $(\psi^{(\rho)}(x))^2-\psi^{(\rho-1)}(x)\psi^{(\rho+1)}(x)\geq 0$ for each $\rho=1,2,\ldots$, and all $x \in \mathbb{R}$.

Theorem (Craven, Csordas, Patrick, Varga)

Let $\psi(x) = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} x^k$ be a real entire function and define

$$
L_p(\psi(x)) := \sum_{j=0}^{2p} \frac{(-1)^{p+j}}{(2p)!} {2p \choose j} \psi^{(j)}(x) \psi^{(2p-j)}(x) ,
$$

where $x \in \mathbb{R}$ and $p = 0, 1, 2, \ldots$ *. Then* $\psi(x) \in \mathscr{L}$ - \mathscr{P} *if and only if for all* $x \in \mathbb{R}$ *and all* $p = 0, 1, 2, \ldots$

$$
L_p(\psi(x))\geq 0.
$$

イロト イ母 トイヨ トイヨ トー

[Background](#page-1-0) [Current Research](#page-13-0) [The Laguerre-Polya Class](#page-1-0) [Stability Preserving Operations and Operators](#page-12-0)

Hadamard Composition

Let
$$
\varphi(x) = \sum_{k=0}^{\infty} a_k x^k \in \mathcal{L} \cdot \mathcal{P}, \ \psi(x) = \sum_{k=0}^{\infty} b_k x^k \in \mathcal{L} \cdot \mathcal{P}^+
$$
.

Hadamard composition

イロト イ押ト イヨト イヨト

 299

∍

[The Laguerre-Polya Class](#page-1-0) [Stability Preserving Operations and Operators](#page-12-0)

Hadamard Composition

Let
$$
\varphi(x) = \sum_{k=0}^{\infty} a_k x^k \in \mathcal{L} \cdot \mathcal{P}, \ \psi(x) = \sum_{k=0}^{\infty} b_k x^k \in \mathcal{L} \cdot \mathcal{P}^+
$$
.

[Background](#page-1-0) [Current Research](#page-13-0)

Hadamard composition

$$
\varphi * \psi(x) := \sum_{k=0}^{\infty} a_k b_k x^k \in \mathscr{L} \text{-} \mathscr{P}
$$

イロト イ押ト イヨト イヨト

 299

∍

[The Laguerre-Polya Class](#page-1-0) [Stability Preserving Operations and Operators](#page-12-0)

Hadamard Composition

Let
$$
\varphi(x) = \sum_{k=0}^{\infty} a_k x^k \in \mathcal{L} \cdot \mathcal{P}, \ \psi(x) = \sum_{k=0}^{\infty} b_k x^k \in \mathcal{L} \cdot \mathcal{P}^+
$$
.

[Background](#page-1-0) [Current Research](#page-13-0)

Hadamard composition

$$
\varphi * \psi(x) := \sum_{k=0}^{\infty} a_k b_k x^k \in \mathscr{L} \text{-} \mathscr{P}
$$

Example (A non-linear operator acting on the coefficients)

Let φ (*x*) = $\sum_{k=0}^{\infty} a_k x^k \in \mathscr{L} \cdot \mathscr{P}^+$. The Hadamard composition is a linear operation, but we may regard $\varphi * \varphi(x) = \sum_{k=0}^{\infty} a_k^2 x^k \in \mathscr{L} \text{-} \mathscr{P}^+$ as the image of φ under the non-linear operator $a_k \mapsto a_k^2,$ acting on the coefficients.

(□) (何) (∃) (∃)

Hadamard Composition

Let
$$
\varphi(x) = \sum_{k=0}^{\infty} a_k x^k \in \mathcal{L} \cdot \mathcal{P}, \ \psi(x) = \sum_{k=0}^{\infty} b_k x^k \in \mathcal{L} \cdot \mathcal{P}^+
$$
.

[Background](#page-1-0) [Current Research](#page-13-0)

Hadamard composition

$$
\varphi * \psi(x) := \sum_{k=0}^{\infty} a_k b_k x^k \in \mathscr{L} \text{-} \mathscr{P}
$$

Example (A non-linear operator acting on the coefficients)

Let φ (*x*) = $\sum_{k=0}^{\infty} a_k x^k \in \mathscr{L} \cdot \mathscr{P}^+$. The Hadamard composition is a linear operation, but we may regard $\varphi * \varphi(x) = \sum_{k=0}^{\infty} a_k^2 x^k \in \mathscr{L} \text{-} \mathscr{P}^+$ as the image of φ under the non-linear operator $a_k \mapsto a_k^2,$ acting on the coefficients.

• Are there other such non-linear operators?

イロト イ押 トイヨ トイヨ

Hadamard Composition

Let
$$
\varphi(x) = \sum_{k=0}^{\infty} a_k x^k \in \mathcal{L} \cdot \mathcal{P}, \ \psi(x) = \sum_{k=0}^{\infty} b_k x^k \in \mathcal{L} \cdot \mathcal{P}^+
$$
.

[Background](#page-1-0) [Current Research](#page-13-0)

Hadamard composition

$$
\varphi * \psi(x) := \sum_{k=0}^{\infty} a_k b_k x^k \in \mathscr{L} \text{-} \mathscr{P}
$$

Example (A non-linear operator acting on the coefficients)

Let φ (*x*) = $\sum_{k=0}^{\infty} a_k x^k \in \mathscr{L} \cdot \mathscr{P}^+$. The Hadamard composition is a linear operation, but we may regard $\varphi * \varphi(x) = \sum_{k=0}^{\infty} a_k^2 x^k \in \mathscr{L} \text{-} \mathscr{P}^+$ as the image of φ under the non-linear operator $a_k \mapsto a_k^2,$ acting on the coefficients.

- Are there other such non-linear operators?
- **Can we characterize them?**

イロト イ押 トイヨ トイヨ

[Historical Background](#page-13-0) [Non-linear stability preserving operators](#page-18-0)

Iterated Turán inequalities

Problem (Craven, Csordas, 1989)

Classify the functions

$$
\psi(x)=\sum_{k=1}^{\omega}\frac{\gamma_k}{k!}x^k\in\mathscr{L}\text{-}\mathscr{P}\;,
$$

where $\gamma_k > 0$ *and* $0 \leq \omega \leq \infty$, for which the functions

$$
f(x):=\sum_{k=0}^{\infty}\frac{\gamma_k^2-\gamma_{k-1}\gamma_{k+1}}{k!}x^k\in\mathscr{L}\text{-}\mathscr{P}.
$$

イロト イ押ト イヨト イヨト

Theorem (Brändén, 2009)

If the zeros of the real polynomial $\psi(x) = \sum_{k=0}^{n} a_k z^k$ are all real and *negative, then the zeros of the polynomial*

$$
\sum_{k=0}^n (a_k^2 - a_{k-1}a_{k+1})z^k
$$
, where $a_{-1} := 0$ and $a_{n+1} := 0$,

are all real and negative.

イロト イ押 トイヨ トイヨ

Theorem (Brändén, 2009)

If the zeros of the real polynomial $\psi(x) = \sum_{k=0}^{n} a_k z^k$ are all real and *negative, then the zeros of the polynomial*

$$
\sum_{k=0}^n (a_k^2 - a_{k-1}a_{k+1})z^k
$$
, where $a_{-1} := 0$ and $a_{n+1} := 0$,

are all real and negative.

• Extends to transcendental entire function in \mathscr{L} - \mathscr{P}^+ .

イロト イ押ト イヨト イヨト

Theorem (Brändén, 2009)

If the zeros of the real polynomial $\psi(x) = \sum_{k=0}^{n} a_k z^k$ are all real and *negative, then the zeros of the polynomial*

$$
\sum_{k=0}^n (a_k^2 - a_{k-1}a_{k+1})z^k
$$
, where $a_{-1} := 0$ and $a_{n+1} := 0$,

are all real and negative.

• Extends to transcendental entire function in \mathscr{L} - \mathscr{P}^+ .

 $a_k \mapsto a_k^2 - a_{k-1}a_{k+1}$ is a non-linear stability preserving operator.

イロト イ母 トイヨ トイヨ トー

Theorem (Brändén, 2009)

If the zeros of the real polynomial $\psi(x) = \sum_{k=0}^{n} a_k z^k$ are all real and *negative, then the zeros of the polynomial*

$$
\sum_{k=0}^n (a_k^2 - a_{k-1}a_{k+1})z^k
$$
, where $a_{-1} := 0$ and $a_{n+1} := 0$,

are all real and negative.

• Extends to transcendental entire function in \mathscr{L} - \mathscr{P}^+ .

 $a_k \mapsto a_k^2 - a_{k-1}a_{k+1}$ is a non-linear stability preserving operator. (?)

イロト イ母 トイヨ トイヨ トー

[Background](#page-1-0)
[Current Research](#page-13-0)

[Historical Background](#page-13-0) [Non-linear stability preserving operators](#page-24-0)

An extension

メロトメ 御 トメ 君 トメ 君 ト

重

An extension

Let $\psi = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} \boldsymbol{\mathsf{x}}^k$ be an entire function and compute

$$
\sum_{j=0}^{2p}\frac{(-1)^{p+j}}{(2p)!}\binom{2p}{j}\psi^{(j)}(x)\psi^{(2p-j)}(x).
$$

メロメメ 御 メメ 君 メメ 君 メー

∍

An extension

Let $\psi = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} \boldsymbol{\mathsf{x}}^k$ be an entire function and compute

$$
\sum_{j=0}^{2p} \frac{(-1)^{p+j}}{(2p)!} {2p \choose j} \psi^{(j)}(x) \psi^{(2p-j)}(x) .
$$

• Evaluating at $x = 0$ we obtain:

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト .

∍

An extension

Let $\psi = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} \boldsymbol{\mathsf{x}}^k$ be an entire function and compute

$$
\sum_{j=0}^{2p}\frac{(-1)^{p+j}}{(2p)!}\binom{2p}{j}\psi^{(j)}(x)\psi^{(2p-j)}(x).
$$

• Evaluating at $x = 0$ we obtain: $(p=0)$ γ_0^2 ,

イロト イ何 トイヨ トイヨ トー

э

An extension

Let $\psi = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} \boldsymbol{\mathsf{x}}^k$ be an entire function and compute

$$
\sum_{j=0}^{2p}\frac{(-1)^{p+j}}{(2p)!}\binom{2p}{j}\psi^{(j)}(x)\psi^{(2p-j)}(x).
$$

• Evaluating at $x = 0$ we obtain:

\n- •
$$
(p=0)
$$
 γ_0^2 ,
\n- • $(p=1)$ $\gamma_1^2 - \gamma_0 \gamma_2$,
\n

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト .

∍

An extension

Let $\psi = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} \boldsymbol{\mathsf{x}}^k$ be an entire function and compute

$$
\sum_{j=0}^{2p}\frac{(-1)^{p+j}}{(2p)!}{2p \choose j}\psi^{(j)}(x)\psi^{(2p-j)}(x).
$$

• Evaluating at $x = 0$ we obtain:

\n- (p=0)
$$
\gamma_0^2
$$
,
\n- (p=1) $\gamma_1^2 - \gamma_0 \gamma_2$,
\n- (p=2) $\frac{1}{4} \gamma_2^2 - \frac{1}{3} \gamma_1 \gamma_2 + \gamma_0 \gamma_6$, etc.
\n

イロト イ母 トイヨ トイヨ トー

∍

An extension

Let $\psi = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} \boldsymbol{\mathsf{x}}^k$ be an entire function and compute

$$
\sum_{j=0}^{2p}\frac{(-1)^{p+j}}{(2p)!}{2p \choose j}\psi^{(j)}(x)\psi^{(2p-j)}(x).
$$

- Evaluating at $x = 0$ we obtain:
	- $(p=0)$ γ_0^2 ,
	- $(p=1)$ $\gamma_1^2 \gamma_0 \gamma_2$,
	- $(p=2)$ $\frac{1}{4}\gamma_2^2 \frac{1}{3}\gamma_1\gamma_2 + \gamma_0\gamma_6$, etc.
	- Shift indices and set $\gamma_k = 0$, whenever the index does not make sense. In general, for positive integers *p*

$$
\frac{(2p)!}{2}\;L_p\left(\psi^{(k)}(x)\right)\Big|_{x=0}=\binom{2p-1}{p}\gamma_{k+p}^2+\sum_{j=1}^p(-1)^j\binom{2p}{p-j}\gamma_{k+p-j}\gamma_{k+p+j}\;.
$$

 $\langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle$ and $\langle \rangle$ is a discrete $\langle \rangle$

An extension

Theorem (Grabarek, 2010)

Let $\psi(z) = \sum_{k=0}^{n} a_k z^k = \prod_{k=1}^{n} (1 + \rho_k z)$, where $\rho_k > 0$ for $1 \le k \le n$, *be a real polynomial with all real negative zeros. Let p be a positive integer and let L^p k be the non-linear operator*

$$
a_k\mapsto \binom{2p-1}{p}a_k^2+\sum_{j=1}^p(-1)^j\binom{2p}{p-j}a_{k-j}a_{k+j}\ .
$$

Then, the zeros of the polynomial

$$
L_k^p\left[\psi(z)\right] = \sum_{k=0}^n L_k^p z^k
$$

are all real and negative.

[Background](#page-1-0) [Current Research](#page-13-0) [Historical Background](#page-13-0) [Non-linear stability preserving operators](#page-18-0)

Remarks and Further Direction

イロト イ押ト イヨト イヨト

 299

∍

The non-linear operator L_k^p is derived from the system of k is defined from the system inequalities that generalize the Laguerre-Pólya class.

4 D F \sim \sim \sim

 \rightarrow \equiv \rightarrow

つへへ

- The non-linear operator L_k^p is derived from the system of k is defined from the system inequalities that generalize the Laguerre-Pólya class.
	- $L_k^0: a_k \mapsto a_k^2$ (Hadamard)

4 D F

 $\left\{ \left\{ \bigoplus_{i=1}^{n} x_i \; : \; i \in \mathbb{N} \right. \right. \right.$

つへへ

- The non-linear operator L_k^p is derived from the system of k is defined from the system inequalities that generalize the Laguerre-Pólya class.
	- $L^0_k : a_k \mapsto a^2_k$ (Hadamard)
	- $L_k^1: a_k \mapsto a_k^2 a_{k-1}a_{k+1}$ (Brändén)

 \rightarrow \equiv \rightarrow \rightarrow

- The non-linear operator L_k^p is derived from the system of k is defined from the system inequalities that generalize the Laguerre-Pólya class.
	- $L^0_k : a_k \mapsto a^2_k$ (Hadamard)
	- $L_k^1: a_k \mapsto a_k^2 a_{k-1}a_{k+1}$ (Brändén)
	- $L_k^2: a_k \mapsto 3a_k^2 4a_{k-1}a_{k+1} + a_{k-2}a_{k+2}$, etc.

- The non-linear operator L_k^p is derived from the system of k is defined from the system inequalities that generalize the Laguerre-Pólya class.
	- $L^0_k : a_k \mapsto a^2_k$ (Hadamard)
	- $L_k^1: a_k \mapsto a_k^2 a_{k-1}a_{k+1}$ (Brändén)
	- $L_k^2: a_k \mapsto 3a_k^2 4a_{k-1}a_{k+1} + a_{k-2}a_{k+2}$, etc.
- Theorem extends to transcendental functions in \mathscr{L} - \mathscr{P}^+ .

The non-linear operator L_k^p is derived from the system of k is defined from the system inequalities that generalize the Laguerre-Pólya class.

[Background](#page-1-0) [Current Research](#page-13-0)

- $L^0_k : a_k \mapsto a^2_k$ (Hadamard)
- $L_k^1: a_k \mapsto a_k^2 a_{k-1}a_{k+1}$ (Brändén)
- $L_k^2: a_k \mapsto 3a_k^2 4a_{k-1}a_{k+1} + a_{k-2}a_{k+2}$, etc.
- Theorem extends to transcendental functions in \mathscr{L} - \mathscr{P}^+ .
- Theorem does not extend to \mathscr{L} - \mathscr{P} , rather to the closed left half-plane.

The non-linear operator L_k^p $\frac{\mu}{k}$ is derived from the system of inequalities that generalize the Laguerre-Pólya class.

[Background](#page-1-0) [Current Research](#page-13-0)

- $L^0_k : a_k \mapsto a^2_k$ (Hadamard)
- $L_k^1: a_k \mapsto a_k^2 a_{k-1}a_{k+1}$ (Brändén)
- $L_k^2: a_k \mapsto 3a_k^2 4a_{k-1}a_{k+1} + a_{k-2}a_{k+2}$, etc.
- Theorem extends to transcendental functions in \mathscr{L} - \mathscr{P}^+ .
- Theorem does not extend to \mathscr{L} - \mathscr{P} , rather to the closed left half-plane.
	- The non-linear operators *L p k* are (weakly) Hurwitz stable.

The non-linear operator L_k^p is derived from the system of k is defined from the system inequalities that generalize the Laguerre-Pólya class.

[Background](#page-1-0) [Current Research](#page-13-0)

- $L^0_k : a_k \mapsto a^2_k$ (Hadamard)
- $L_k^1: a_k \mapsto a_k^2 a_{k-1}a_{k+1}$ (Brändén)
- $L_k^2: a_k \mapsto 3a_k^2 4a_{k-1}a_{k+1} + a_{k-2}a_{k+2}$, etc.
- Theorem extends to transcendental functions in \mathscr{L} - \mathscr{P}^+ .
- Theorem does not extend to \mathscr{L} - \mathscr{P} , rather to the closed left half-plane.
	- The non-linear operators *L p k* are (weakly) Hurwitz stable. (?)

The non-linear operator L_k^p is derived from the system of k is defined from the system inequalities that generalize the Laguerre-Pólya class.

[Background](#page-1-0) [Current Research](#page-13-0)

- $L^0_k : a_k \mapsto a^2_k$ (Hadamard)
- $L_k^1: a_k \mapsto a_k^2 a_{k-1}a_{k+1}$ (Brändén)
- $L_k^2: a_k \mapsto 3a_k^2 4a_{k-1}a_{k+1} + a_{k-2}a_{k+2}$, etc.
- Theorem extends to transcendental functions in \mathscr{L} - \mathscr{P}^+ .
- Theorem does not extend to \mathscr{L} - \mathscr{P} , rather to the closed left half-plane.
	- The non-linear operators *L p k* are (weakly) Hurwitz stable. (?)
	- Use the complex version of the *Laguerre inequalities*

$$
|f'(z)|^2 \geq \Re\{f(z)\overline{f''(z)}\}.
$$

Remarks and Further Direction

In the proof of the Theorem, the reality of zeros of L_k^p $\frac{\mu}{k}[\psi(z)]$, for each positive integer *p*, depends on the reality of zeros of the polynomial

$$
Q_n^p(z) := \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{S(p,k)}{2} {n \choose 2k} z^k
$$
, where $S(p,k) = \frac{{2p \choose p}{2k \choose k}}{{p+k \choose p}}$.

イロト イ押 トイヨ トイヨ

Remarks and Further Direction

In the proof of the Theorem, the reality of zeros of L_k^p $\frac{\mu}{k}[\psi(z)]$, for each positive integer *p*, depends on the reality of zeros of the polynomial

$$
Q_n^p(z):=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\frac{S(p,k)}{2}{2k\choose 2k}z^k\ ,\ \text{where}\ S(p,k)=\frac{\binom{2p}{p}\binom{2k}{k}}{\binom{p+k}{p}}\ .
$$

Study the non-linear operator $a_k \mapsto \mu_0 a_k^2 + \mu_2 a_{k-1} a_{k+1}$.

イロト イ押 トイヨ トイヨ

Remarks and Further Direction

In the proof of the Theorem, the reality of zeros of L_k^p $\frac{\mu}{k}[\psi(z)]$, for each positive integer *p*, depends on the reality of zeros of the polynomial

$$
Q_n^p(z):=\sum_{k=0}^{\left\lfloor\frac{p}{2}\right\rfloor}\frac{S(p,k)}{2}{2k\choose 2k}z^k\ ,\ \text{where}\ S(p,k)=\frac{\binom{2p}{p}\binom{2k}{k}}{\binom{p+k}{p}}\ .
$$

- Study the non-linear operator $a_k \mapsto \mu_0 a_k^2 + \mu_2 a_{k-1} a_{k+1}$.
- The polynomial $Q_n^p(z)$ becomes

$$
\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\frac{S(1,k)}{2}\binom{n}{2k}(k\mu_2+\mu_0)z^k.
$$

イロト イ押 トイヨ トイヨ

Remarks and Further Direction

In the proof of the Theorem, the reality of zeros of L_k^p $\frac{\mu}{k}[\psi(z)]$, for each positive integer *p*, depends on the reality of zeros of the polynomial

$$
Q_n^p(z):=\sum_{k=0}^{\left\lfloor\frac{p}{2}\right\rfloor}\frac{S(p,k)}{2}{2k\choose 2k}z^k\ ,\ \text{where}\ S(p,k)=\frac{\binom{2p}{p}\binom{2k}{k}}{\binom{p+k}{p}}\ .
$$

- Study the non-linear operator $a_k \mapsto \mu_0 a_k^2 + \mu_2 a_{k-1} a_{k+1}$.
- The polynomial $Q_n^p(z)$ becomes

$$
\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\frac{S(1,k)}{2}\binom{n}{2k}(k\mu_2+\mu_0)z^k.
$$

Use *multiplier sequences* and *complex zero decreasing sequences* to obtain further properties.

イロト イ押 トイヨ トイヨト

[Historical Background](#page-13-0) [Non-linear stability preserving operators](#page-18-0)

Coefficient Bounds

Corollary (Grabarek)

The non-linear operator $a_k \mapsto \mu_0 a_k^2 + \mu_2 a_{k-1} a_{k+1}$ *preserves* $L^2 \cdot \mathcal{P}^+$ *, provided that either*

イロト イ押ト イヨト イヨト

э

[Historical Background](#page-13-0) [Non-linear stability preserving operators](#page-18-0)

Coefficient Bounds

Corollary (Grabarek)

The non-linear operator $a_k \mapsto \mu_0 a_k^2 + \mu_2 a_{k-1} a_{k+1}$ *preserves* $L^2 \cdot \mathcal{P}^+$ *, provided that either*

$$
0 \mu_0 \neq 0, \mu_0 > 0, \text{ and } \mu_0 + \mu_2 > 0, \text{ or }
$$

イロト イ何 トイヨ トイヨ ト

э

Corollary (Grabarek)

The non-linear operator $a_k \mapsto \mu_0 a_k^2 + \mu_2 a_{k-1} a_{k+1}$ *preserves* $L^2 \cdot \mathcal{P}^+$ *, provided that either*

- $\bf{1}_{\mu_0} \neq 0, \mu_0 > 0$, and $\mu_0 + \mu_2 > 0$, or
- 2 $\mu_0 \neq 0$, $\mu_0 < 0$, and $\mu_0 + \mu_2 < 0$, or

イロト イ押ト イヨト イヨト

Corollary (Grabarek)

The non-linear operator $a_k \mapsto \mu_0 a_k^2 + \mu_2 a_{k-1} a_{k+1}$ *preserves* $L^2 \cdot \mathcal{P}^+$ *, provided that either*

- $\bf{1}_{\mu_0} \neq 0, \mu_0 > 0$, and $\mu_0 + \mu_2 > 0$, or
- 2 $\mu_0 \neq 0$, $\mu_0 < 0$, and $\mu_0 + \mu_2 < 0$, or
- \bullet *exactly one of* μ_0 , μ_2 *is zero.*

イロト イ押ト イヨト イヨト

Corollary (Grabarek)

The non-linear operator $a_k \mapsto \mu_0 a_k^2 + \mu_2 a_{k-1} a_{k+1}$ *preserves* $L^2 \cdot \mathcal{P}^+$ *, provided that either*

 $\bf{1}_{\mu_0}\neq 0, \mu_0 > 0$, and $\mu_0 + \mu_2 > 0$, or

$$
P_0 \neq 0, \mu_0 < 0, \text{ and } \mu_0 + \mu_2 < 0, \text{ or}
$$

 \bullet *exactly one of* μ_0 , μ_2 *is zero.*

We could also have used *hypergeometric polynomials*:

$$
\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{S(1,k)}{2} {n \choose 2k} (k\mu_2 + \mu_0) z^k =
$$

イロト イ押ト イヨト イヨト

Corollary (Grabarek)

The non-linear operator $a_k \mapsto \mu_0 a_k^2 + \mu_2 a_{k-1} a_{k+1}$ *preserves* $L^2 \cdot \mathcal{P}^+$ *, provided that either*

 $\bf{1}_{\mu_0}\neq 0, \mu_0 > 0$, and $\mu_0 + \mu_2 > 0$, or

$$
2 \mu_0 \neq 0, \mu_0 < 0, \text{ and } \mu_0 + \mu_2 < 0, \text{ or }
$$

 \bullet *exactly one of* μ_0 , μ_2 *is zero.*

We could also have used *hypergeometric polynomials*:

$$
\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\frac{S(1,k)}{2}\binom{n}{2k}(k\mu_2+\mu_0)Z^k=
$$

$$
z \cdot \frac{\mu_2}{2} n(n-1) \cdot {}_2F_1\left(\frac{3}{2}-\frac{n}{2},1-\frac{n}{2};3;4z\right) + \mu_0 \cdot {}_2F_1\left(\frac{1}{2}-\frac{n}{2},-\frac{n}{2};2;4z\right)
$$

イロト イ押ト イヨト イヨト

.

つへへ

[Background](#page-1-0)
[Current Research](#page-13-0)

[Historical Background](#page-13-0) [Non-linear stability preserving operators](#page-18-0)

 $\vert \Xi \vert$

 299

メロトメ部 トメミトメミト

- **[Background](#page-1-0)** [Current Research](#page-13-0) [Historical Background](#page-13-0) [Non-linear stability preserving operators](#page-18-0)
- **•** Classify the coefficients $\mu_0, \mu_2, \ldots, \mu_{2p-2}$ for which the non-linear operator *L p* $^{\rho}_{k}$ preserves $\mathscr{L}\text{-}\mathscr{P}^{+}$, or the reality of zeros.

イロト イ押ト イヨト イヨト

- **[Background](#page-1-0)** [Current Research](#page-13-0) **[Historical Background](#page-13-0)** [Non-linear stability preserving operators](#page-18-0)
- **•** Classify the coefficients $\mu_0, \mu_2, \ldots, \mu_{2p-2}$ for which the non-linear operator *L p* $^{\rho}_{k}$ preserves $\mathscr{L}\text{-}\mathscr{P}^{+}$, or the reality of zeros.
- Use hypergeometric polynomials, rather than complex zero decreasing sequences.

イロト イ押 トイヨ トイヨ

- **[Background](#page-1-0)** [Current Research](#page-13-0) [Historical Background](#page-13-0) [Non-linear stability preserving operators](#page-18-0)
- **•** Classify the coefficients $\mu_0, \mu_2, \ldots, \mu_{2p-2}$ for which the non-linear operator *L p* $^{\rho}_{k}$ preserves $\mathscr{L}\text{-}\mathscr{P}^{+}$, or the reality of zeros.
- Use hypergeometric polynomials, rather than complex zero decreasing sequences.
	- The zeros of

$$
{}_2F_1\left(-\frac{n}{2},\frac{1-n}{2};p+1;4z\right)
$$

are real and negative for any positive integer *p* and a fixed positive integer *n* (cf. K. Driver and K. Jordaan).

イロト イ押 トイヨ トイヨ

- **•** Classify the coefficients $\mu_0, \mu_2, \ldots, \mu_{2p-2}$ for which the non-linear operator *L p* $^{\rho}_{k}$ preserves $\mathscr{L}\text{-}\mathscr{P}^{+}$, or the reality of zeros.
- Use hypergeometric polynomials, rather than complex zero decreasing sequences.
	- The zeros of

$$
{}_2F_1\left(-\frac{n}{2},\frac{1-n}{2};p+1;4z\right)
$$

are real and negative for any positive integer *p* and a fixed positive integer *n* (cf. K. Driver and K. Jordaan).

Use contiguous function relations and/or the differential operator $\theta = z \frac{d}{dz}$.

イロト イ押 トイヨ トイヨト

- **•** Classify the coefficients $\mu_0, \mu_2, \ldots, \mu_{2p-2}$ for which the non-linear operator *L p* $^{\rho}_{k}$ preserves $\mathscr{L}\text{-}\mathscr{P}^{+}$, or the reality of zeros.
- Use hypergeometric polynomials, rather than complex zero decreasing sequences.
	- The zeros of

$$
{}_2F_1\left(-\frac{n}{2},\frac{1-n}{2};p+1;4z\right)
$$

are real and negative for any positive integer *p* and a fixed positive integer *n* (cf. K. Driver and K. Jordaan).

- Use contiguous function relations and/or the differential operator $\theta = z \frac{d}{dz}$.
- **•** Iterates of

$$
\mu \to \, {}_2F_1\left(-\frac{n}{2}+\mu,\frac{1-n}{2}+\mu;\, p+1;4z\right)
$$

(notation of D. Karp) arise in the polynomials associated with L_k^p for $p \geq 2$.

イロト イ押ト イヨト イヨト

Finally, regarding the non-linear operator $S_r : a_k \mapsto a_k^2 - a_{k-r}a_{k+r}$, we know from R. Yoshida's work that S_6 does not preserve \mathscr{L} - \mathscr{P}^+ . However, we know that L_k^p $\frac{\rho}{k}$ does preserve $\mathscr{L}\text{-}\mathscr{P}^+ \quad$ for all positive integers *p*. We make the observation that

イロト イ押 トイヨ トイヨト

Finally, regarding the non-linear operator $S_r : a_k \mapsto a_k^2 - a_{k-r}a_{k+r}$, we know from R. Yoshida's work that S_6 does not preserve \mathscr{L} - \mathscr{P}^+ . However, we know that L_k^p $\frac{\rho}{k}$ does preserve $\mathscr{L}\text{-}\mathscr{P}^+ \quad$ for all positive integers *p*. We make the observation that

$$
L_k^p = \sum_{j=1}^p (-1)^{j+1} {2p \choose p-j} (a_k^2 - a_{k-j} a_{k+j}),
$$

イロト イ押 トイヨ トイヨト

Finally, regarding the non-linear operator $S_r : a_k \mapsto a_k^2 - a_{k-r}a_{k+r}$, we know from R. Yoshida's work that S_6 does not preserve \mathscr{L} - \mathscr{P}^+ . However, we know that L_k^p $\frac{\rho}{k}$ does preserve $\mathscr{L}\text{-}\mathscr{P}^+ \quad$ for all positive integers *p*. We make the observation that

$$
L_k^p = \sum_{j=1}^p (-1)^{j+1} {2p \choose p-j} (a_k^2 - a_{k-j} a_{k+j}),
$$

and ask what is happening here?

 $\langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle$ and $\langle \rangle$ is a discrete $\langle \rangle$

Stay tuned for the 19th ICFIDCAA !

メロトメ 伊 トメ ミトメ ミト

 299

活