Moose Habitat Surveyor (MHS)

Requirements and Design Analysis
University of Alaska Anchorage

CS470 Software Project
Spring Semester, 2006
Dr. Kenrick Mock, Instructor

Dr. Don Spalinger, Project Owner

Jim Weller, Software Engineer
http://mhs.jimweller.net/

Table of Contents
1Moose Habitat Surveyor (MHS)

11
Introduction

11.1
Overview

11.2
Purpose of Document

11.3
Purpose of System

11.4
Scope of System

11.5
Scope of Document

21.6
Audience

21.7
Document Conventions

21.8
Objectives and Success criteria

21.9
Definitions, acronyms, and abbreviations

32
Project Strategy

32.1
Lifecycle Methodology

32.2
Project Management

33
Requirements Analysis

33.1
Current system

43.2
Proposed system

43.2.1
Overview

43.2.2
Functional Requirements

53.2.3
Nonfunctional Requirements

53.2.3.1
Usability

53.2.3.2
Reliability

53.2.3.3
Performance

53.2.3.4
Supportability

53.2.3.5
Implementation

63.2.3.6
Interface

63.2.3.7
Packaging

63.2.4
System models

63.2.4.1
Scenarios

61.
Scenario: Import Waypoints From Agency

62.
Scenario: Sample Biomass

113.
Scenario: Export Waypoint’s Data To Agency

113.2.4.2
Use case model

113.2.4.2.1
Use Case: ImportWaypoints

123.2.4.2.2
Use Case:ConductFieldTrip

133.2.4.2.3
Use Case:MeasurePlantPatch

143.2.4.2.4
Use Case: SamplePlantPatchCurrentYearsGrowths

143.2.4.2.5
Use Case:MeasureCurrentYearsGrowth

153.2.4.2.6
Use Case:Export Waypoint’s Biomass Data

163.2.4.2.7
Screen mock-ups

183.2.5
System Architecture

183.2.5.1
Architectural Style

183.2.5.2
Programming Language

183.2.5.3
3rd Party Components and Hardware

183.2.5.3.1
Polhemus Patriot (3DRP) Hardware & API

183.2.5.3.2
Mitutoyo 265433 (Calipers) & Human Interface Devices (HID)

184
Design Analysis

194.1
Design Considerations

194.1.1
Assumptions and Dependencies

194.1.2
General Constraints

194.1.3
Goals and Guidelines

194.1.4
Development Methods

194.2
Architecture

194.2.1
Architectural Strategies

204.2.2
Top Level System Architecture

224.2.2.1
Subsystem Architecture

224.3
Policies and Tactics

224.3.1
General Guidelines

224.3.2
Coding Guidelines

234.4
Detailed System Design

234.4.1
Controller

234.4.2
View

244.4.3
Model

244.4.3.1
FieldTrip

274.4.3.2
Waypoint

284.4.3.3
PlantPatch

294.4.3.4
CurrentYearsGrowth

304.4.3.5
PolhemusService

314.4.4
File Formats

314.4.4.1.1
Import Format

314.4.4.1.2
Export Format

324.4.4.1.3
Save File Format

335
References

346
Revision History

Table of Figures
8Figure 3‑1 Waypoint Layout Scenario Diagram

9Figure 3‑2 Measure Plant Patch Diameter Scenario Diagram

9Figure 3‑3 3DRP Pole Placement in Plant Patch Scenario Diagram

10Figure 3‑4 PlantPatch sampling scenario diagram

11Figure 3‑5 MeasureCurrentYearsGrowth Scenario Diagram

11Figure 3‑6 ImportWaypoint Use Case Diagram

13Figure 3‑7 ConductFieldTrip Use Case Diagram

15Figure 3‑8 ExportWaypointBiomassDataUse Case Diagram

16Figure 3‑16 MHS Main Application Mockup

16Figure 3‑17 MHS Main Menus Mockup

17Figure 3‑18 MHS Sampling Wizard Mockup 3

17Figure 3‑19 MHS Application Mockup 4

21Figure 4‑1 Top Level System Architecture

24Figure 4‑2 View Overview

1 Introduction

1.1 Overview

Measuring density of certain plant species and their current year’s growth is important for a number of biological applications, including determining availability of moose forage. The proposed methodology will use computers, a random sparse sampling model, and statistics. There is currently no equivalent system in use in Alaska. This system intends to implement the measurement and recording component of the new methodology.
1.2 Purpose of Document
The purpose of this document is to describe a software system. The document describes the requirements and design analysis of the Moose Habitat Surveyor (MHS). MHS is biomass sampling software.
1.3 Purpose of System

The purpose of this system is to facilitate the collection of biomass data from outdoor study areas. The system will allow external agencies to define areas to be studied, field biologists to engage in systematic sample recording, and operators to export data for analysts. The system will combine existing hardware and computing platforms into a single biomass sampling suite.

The application will allow a group of field biologists to use a portable PC (generally a tablet PC) which is integrated with data sampling hardware to take measurements and counts of plants in a predefined space. The goal of the system is to retrieve systematic data samples from pre-chosen Lat/Lon waypoints and export it into a format that lends to analysis and incorporation into GIS systems.

1.4 Scope of System

The application must allow the import of an arbitrary number of waypoints from an agency. Field biologists must be able to visit the waypoints and sample the new growth of an arbitrary number of predefined plant species. Given a species at a waypoint, field biologist must be able to sample an arbitrary number of plant patches of that species. Field biologists sample a total of 9 CurrentYearsGrowths in a plant patch: 3 CurrentYearsGrowths at each of 3 depth levels (0-1m, 1-2m, 2-3m). Finally, the application must be able to export the biomass data in an orthogonal data format.

1.5 Scope of Document

This document describes the requirements (scenarios and use cases), software (models and classes) and hardware (external input devices) that comprise the MHS system. Software is expressed as textual descriptions and UML diagrams. Data and third party interactions are expressed as textual descriptions. The document aims for completeness in describing the application domain’s relationship to a Win32 application.

1.6 Audience

This document is written for external agencies, software engineers and document reviewers. The software engineer is Jim Weller. The reviewers will include Dr. Kenrick Mock (Computer Science), Dr. Don Spalinger (Biology) and the students of the CS470 course. All represent the University of Alaska Anchorage.

1.7 Document Conventions

1. References to the Model View and Controller from the MVC architectural style will appear with the first letter upper cased.

2. Scenario, class, and use case names will appear concatenated with the first letter of words uppercased. For example FieldTrip and MeasurePlantPatch.

3. Methods in the data dictionary are listed italic text

4. Acronyms in parenthesis the first time their phrase is used. For example, Microsoft Foundation Classes (MFC).

1.8 Objectives and Success criteria

· All required assignments are submitted in reasonable time and receive a passing grade
· All scenarios are agreed satisfactory by all stakeholders.

· All functional and non-functional requirements are agreed upon by the development team.

· All functional requirements are complete and correct.

1.9 Definitions, acronyms, and abbreviations

· Moose Habitat Surveyor (MHS) is the software and hardware suite described by this document.
· Agencies are organizations external to the system that request the measurement of biomass at waypoints. Agencies supply waypoints for field trips.
· 3-Dimensional Radio Pen (3DRP or PATRIOT or polhemus) is a 3 dimensional tracking device from Polhemus which allows the mapping and recording of 3 dimensional points.

· Current Annual Growth (CAG) or Current Year’s Growth (CurrentYearsGrowth, or CYG) is a biological terms used to describe new growth on plants for the current year. CurrentYearsGrowths are good moose forage.

· USB Calipers or Calipers are a device for measuring small linear distances between two points. Calipers are used to measure the diameter of a CurrentYearsGrowth’s base. They have a USB interface to the computer system.

· Depth Level (depth or level) refers to the height range in a plant patch at which a CurrentYearsGrowth exists. Levels are broken into 0-1 meter, 1-2 meters, and 2-3 meters. Low forage could be covered by snow in the winter. High forage is available to the tall moose.
· Field trip is an excursion to a study site to measure CurrentYearsGrowths in the area. Field trips are composed of a series of waypoints.
· Field Biologist is a user of the system that participates in field trips to waypoints and sampling of biomass.
· Plant Patch (or just Patch) is a single instance of a particular plant species. From the perspective of the system, a patch is a location where 9 CurrentYearsGrowths will be measured at three different depth levels.
· Waypoint refers to a specific coordinate location exported from GIS and navigable by GPS. A waypoint is the center of a circle with a 15 meter radius in which plant patches will be sampled. Waypoints will be expressed in Universal Transverse Mercator.
2 Project Strategy

2.1 Lifecycle Methodology
The MHS project will use a prototyping lifecycle methodology. The goal of using prototyping is to deliver a usable system given the finite time allotted by the semester length for development. Prototyping will especially be emphasized in the design of the GUI. Prototyping was chosen to compensate for a number of unknowns in the project including:

· Polhemus 3drp API which is written in C++ and distributed as a binary dependent on an older version (4) of the Microsoft Foundation Classes (MFC).
· Dr. Spalinger’s sampling sequence is still being perfected to meet statistical requirements.
· The interface must be designed as a series of revisions because Dr. Spalinger’s requirements are vague to start.
2.2 Project Management

Project details will be planned and recorded using Microsoft Project. Dr. Spalinger and Jim Weller will meet every Monday at 2pm. Meeting agendas and minutes will be recorded in Microsoft word and posted to the project website.

The project website is http://mhs.jimweller.net. The site will be maintained as a developer’s blog with downloads and links to relevant documents available from the front page. The project website uses Wordpress.
3 Requirements Analysis
3.1 Current system

There is no current system in use in Alaska. Agencies have said they would use the application right now if it existed. The agencies interested in using this approach include the US Forest Service, US Fish and Wildlife Service, and the Alaska Department of Fish and Game.
Other methodologies involve one or a combination of

· Exhaustive measuring of complete plants and sites

· Working in static site grids much like archeology

· Impedance based measurements like sonar and infrared

· Image processing techniques against aerial or satellite photographs
3.2 Proposed system

3.2.1 Overview

From Dr. Spalinger’s “CS401 Moose Habitat Survey Application Document”:

This computer application will allow the user to digitally collect information on vegetation composition and biomass for inventorying moose habitat in Alaska. The agencies interested in using this approach include the US Forest Service, US Fish and Wildlife Service, and the Alaska Department of Fish and Game.

Field biologists will receive a set of waypoints from an agency’s GIS database. From the perspective of the application the waypoints are randomly chosen. The waypoints will be imported into the application as sites to be surveyed from a file.

The biologists will use GPS navigation device to go to the site. They will then use a combination of integrated hardware tools, 3drp and USB calipers, to measure the location and dimensions of CurrentYearsGrowths of a finite list of plant species.

After all waypoints have been visited and sampled (or the field trip ends due to other constraints) the data is exported to some orthogonal format (CSV, excel, RDBMS etc.) for processing by biometricians, agencies, and researchers.
3.2.2 Functional Requirements

The functional requirements of the system are listed here in descending priority. That is the most important requirements are listed first

1. Field Biologists must be able to import GIS/GPS latitude and longitude coordinates into the application as waypoints of sites to visit and survey.

2. Field Biologists, having arrived at a waypoint, must be able record one or more plant species and plant patches of those species’ spatial relationships to each other within a 25 meter radius.

3. Field Biologists, in measuring a particular instance of a plant species, must be able to sample 9 CurrentYearsGrowth, map their spatial relationships, measure the spatial location of the CurrentYearsGrowth base and tip, and record the diameter of the CurrentYearsGrowth base.

4. Field Biologists must be able to categorize spatial areas in terms of three depth levels, 0-1m, 1-2m, and 2-3m.

5. Field Biologists, after field sampling, must be able to export the resultant biomass data set into an orthogonal format for analysis.

6. Field Biologists should have data automatically time stamped.

7. Field Biologists should be able record the names of Field Biologists that work on a particular field trip
8. Field Biologists should be able to save and load the state of the application and sampling into a file. Daylight, weather, battery and a host of other conditions can place time restrictions on Field Biologists. So, the application must be able to stop and resume in the middle of a process.
9. Hardware feedback and adjustment. The application could keep the user notified that hardware is online and functioning. It should also provide instructions and/or interfaces to manage hardware.

10. Field Biologists could be able to undo and/or redo and/or adjust existing data.

3.2.3 Nonfunctional Requirements

3.2.3.1 Usability

· Minimal Text Entry. Field sampling may occur in inclement conditions like snow or rain and Field Biologists might be wearing protective or weather gear. Where ever possible, integrated hardware should be used for data entry.

· Outdoor Equipment. A hardened computer with an outdoor screen is suggested to use the application in an outdoor environment. Examples would be a hardened computer like Panasonic ToughBook or a water resitant enclosure like the OtterBox tablet case.
3.2.3.2 Reliability

· No Network. It can be assumed that field researchers will not have network access while sampling since field trips will likely be conducted in remote locations.
· Accuracy. The time, human resources and hardware costs associated with inventorying and analyzing a study area is immense. So, complete and accurate data is a priority.

· Precision. The software must express the minimum precision provided by the hardware devices. The precision must also be clearly defined in internal documents and user manuals.
3.2.3.3 Performance

· Power Usage. It can be assumed that field researchers will not have access to AC power sources and that conservation of battery will be a priority.
3.2.3.4 Supportability

· Electronic Users Manual. Given that Field Biologists have no access to the network a user’s manual must be included on the portable pc.

· Print Users Manual. Given that Field Biologists need to conserve power on the hardware, a print user manual must be available.
3.2.3.5 Implementation

· Extensibility. Given the short duration of the CS470 course relative to the needs of the project, the application is documented and designed such that future courses and projects can extend the suite.

· Programming languages. Most of the hardware devices’ APIs are implemented in C++. The project minimally implements the 3drp component in C++. The rest of the system will strive to use languages that lend to future students maintenance and extension.
3.2.3.6 Interface

· GUI. The interface should take advantage of modern GUIs and the tablet PC pen interface. The interface should be intuitive and usable with minimal inputs.

· Minimal decision branching. The process of recording sample data should be sequentially driven without excessive decision branching required. The flow of recording should directly mirror the flow of physical sampling.
· Single Application. The user component of the suite should run as a single user interface application. The skills, time, and free hands to manipulate and navigate the operating system should be minimized (e.g. application switch or cutting and pasting). The application could be deployed to run on startup, making the tablet pc a turnkey device.
3.2.3.7 Packaging

· Windows Tablet PC operating system. The application will be designed with the Windows XP Tablet PC edition in mind. Though it should work on any 32 bit windows including Windows 2000, XP, and 2003. The project does not strive for compatibility with 16 or 64 bit versions of Windows or with Windows versions prior to Windows 2000.
· Executable Installer. The application shall have an MSI (or equivalent) installer that contains the software and manual.

· Patches and Updates. Modifications, patches, and upgrades to the software will be distributed if available.
3.2.4 System models

3.2.4.1 Scenarios

1. Scenario: Import Waypoints From Agency

a. Actors: Agency, Field Biologist

b. Flow of events:

i. Field Biologist receives waypoint list as a text file from Agency

ii. Field Biologist imports waypoints into application GUI through the File>Import drop down menu.

2. Scenario: Sample Biomass
a. Actors: Field Biologist
b. Flow of events: (see Figure 3‑1, Figure 3‑2, Figure 3‑3, Figure 3‑4)
i. Identify plant species within a 15m radius
ii. Choose species that will be sampled

iii. For every species that will be sampled
1. Identify plant patches of that species

2. For every plant patch identified a biologist will
a. Biologist places the pole at nearest estimated edge of plant patch (pole1)
b. Measure the distance in meters from the waypoint to pole1 and input distance into the program using keyboard/ink.
c. Biologist places a pole at farthest estimated edge of plant patch (pole2)
d. Measure the distance from waypoint to pole2 and input distance into the program using keyboard/ink.

e. Measure the diameter of the plant patch at the estimated widest point and record it in the plant patch wizard

f. The computer will generate a random point from a uniform distribution on the line between pole1 and pole2
g. Place 3DRP-pole in body of plant at the random point
h. For each depth level (0-1m, 1-2m, 2-3m)

i. Computer selects a random point
ii. Navigate the 3DRP to the point
iii. Find the nearest CurrentYearsGrowth to the random point (CurrentYearsGrowth1)

iv. Measure CurrentYearsGrowth1 using the 3DRP and calipers to automatically input dimensions.
v. Find the nearest CurrentYearsGrowth to CurrentYearsGrowth1 (CurrentYearsGrowth2)

vi. Measure CurrentYearsGrowth2
vii. Find the next nearest CurrentYearsGrowth (CurrentYearsGrowth3) to CurrentYearsGrowth1

viii. Measure CurrentYearsGrowth3

[image: image1.emf]15 meter radius

PlantPatch1

PlantPatch4

PlantPatch2

PlantPatch3

Waypoint

Survey

Pole2

Survey

Pole1

D

i

a

m

e

t

e

r

P

l

a

n

t

P

a

t

c

h

N

e

a

r

D

i

s

t

a

n

c

e

P

l

a

n

t

P

a

t

c

h

F

a

r

D

i

s

t

a

n

c

e

Waypoint Area

Figure 3‑1 Waypoint Layout Scenario Diagram

[image: image2.emf]PlantPatch

Survey

Pole

Survey

Pole

FieldBiologist

Diameter of Patch

WayPoint

PlantPatch Near Distance

PlantPatch Far Distance

Figure 3‑2 Measure Plant Patch Diameter Scenario Diagram

[image: image3.emf]Survey

Pole2

Survey

Pole1

FieldBiologist

Diameter of Patch

Random Point on Diameter

3drp

Pole

Figure 3‑3 3DRP Pole Placement in Plant Patch Scenario Diagram

[image: image4.emf]3drp Pole

CYG

Random 3D

Point

Legend

3drp

1 meter

2 meters

3 meters

Figure 3‑4 PlantPatch sampling scenario diagram

[image: image5.emf]MeasureCYG Steps

 1 Map Base 3D Point

 2 Map Tip 3D Point

 3 Measure Base Diameter

1

3

2

Figure 3‑5 MeasureCurrentYearsGrowth Scenario Diagram
3. Scenario: Export Waypoint’s Data To Agency

a. Actors: Field Biologist, Agency

b. Flow of events:

i. Field Biologist exports sample data for waypoints using the File>Export menu item.

ii. Field Biologist transfers data to Agency
3.2.4.2 Use case model

3.2.4.2.1 Use Case: ImportWaypoints

Actors

1. Initiated by Agency
2. Communicates with FieldBiologist

Flow of Events (see Figure 3‑6)
1. An Agency communicates Waypoints to FieldBiologists .
2. The FieldBiologists import the Waypoints into the MHS system.

Entry Conditions

· An Agency initiates a field trip with FieldBiologists.
Exit Conditions

· The Waypoints are successfully imported into the MHS system.

[image: image6.jpg]FieldBiologist

MHS

TmportaypointCoord:
natesFromFile

Figure 3‑6 ImportWaypoint Use Case Diagram

3.2.4.2.2 Use Case:ConductFieldTrip

Actors

1. Conducted by FieldBiologist(s)
Flow of Events (see Figure 3‑7)
1. FieldBiologist navigate to Waypoint.
2. FieldBiologist identify plant species at each Waypoint.
3. FieldBiologist identify PlantPatches for each species.
4. FieldBiologist measure PlantPatches (includes use case MeasurePlantPatch).

5. FieldBiologist sample CurrentYearsGrowths in a PlantPatch (includes use cases SamplePlantPatch).

6. FieldBiologist navigate to next Waypoint.

Entry Conditions

· FieldBiologist begin the FieldTrip
Exit Conditions

· The PlantPatches of PlantSpecies are completely sampled at all Waypoints in a FieldTrip.
· OR
· The FieldTrip is terminated for external reasons like time, resources, or injury.

[image: image7.emf]FieldBiologist

MeasureCYG

«uses»

ConductFieldTrip

«uses»

SamplePlantPatchCYG

s

«uses»

MHS

MeasurePlantPatch

3D Radio Pen

USB Calipers

Current Years Growth

PlantPatch

Waypoint

Figure 3‑7 ConductFieldTrip Use Case Diagram

3.2.4.2.3 Use Case:MeasurePlantPatch
Actors

1. Conducted by FieldBiologist

Flow of Events (see Figure 3‑7)
1. FieldBiologists select PlantPatch of each species at a Waypoint.

2. FieldBiologists measure distance to point in PlantPatch nearest to Waypoint.
3. FieldBiologists measure distance to point in PlantPatch farthest from Waypoint.
4. Field biologists measure the diameter of the PlantPatch at its estimated widest point.
5. System calculates random point on the line between the nearest and farthest points in the PlantPatch.

6. FieldBiologists sample PlantPatch’s CurrentYearsGrowths from the random point (includes use case SamplePlantPatchCurrentYearsGrowths).

Entry Conditions

· Waypoint contains PlantPatch of PlantSpecies.
Exit Conditions

· PlantPatch’s distances and diameter are measured.
· All CurrentYearsGrowths at the PlantPatch are sampled.
3.2.4.2.4 Use Case: SamplePlantPatchCurrentYearsGrowths
Actors

1. Conducted by FieldBiologist

Flow of Events (see Figure 3‑7)
1. System generates random 3D point for each of three 1 meter depth levels

2. FieldBiologist orients 3DRP to 3D point in each depth level

3. FieldBiologist samples CurrentYearsGrowth nearest to 3D point, data is input with 3DRP. (includes use case MeasureCurrentYearsGrowth).

4. FieldBiologist samples CurrentYearsGrowth nearest to first CurrentYearsGrowth, data is input with 3DRP stylus button (includes use case MeasureCurrentYearsGrowth).

5. FieldBiologist samples CurrentYearsGrowth next nearest to first CurrentYearsGrowth , data is input with 3DRP (includes use case MeasureCurrentYearsGrowth).

Entry Conditions

· 3DRP oriented at random point in PlantPatch
Exit Conditions

· 3 CurrentYearsGrowths are measured at each of 3 depth levels (total of 9 CurrentYearsGrowths).
3.2.4.2.5 Use Case:MeasureCurrentYearsGrowth
Actors

1. Conducted by FieldBiologist

Flow of Events (see Figure 3‑7)
1. FieldBiologist measures 3D location of CurrentYearsGrowth’s base using 3DRP
2. FieldBiologist measures 3D location of CurrentYearsGrowth’s tip using 3DRP.

3. FieldBiologist measures diameter using Calipers.

Entry Conditions

· CurrentYearsGrowth identified relative to previous CurrentYearsGrowth or relative to the random 3D point at depth level
Exit Conditions

· CurrentYearsGrowth’s base, tip, and base diameter are measured
3.2.4.2.6 Use Case:Export Waypoint’s Biomass Data
Actors

1. Initiated by FieldBiologist
2. Communicates with Agency

Flow of Events (see Figure 3‑8)
1. The FieldBiologists export the Waypoints from the MHS system to a file.

2. FieldBiologists communicate Waypoints’ biomass data to an Agency.
Entry Condition

· A FieldTrip is completed
Exit Condition

· The Waypoints are successfully exported from the MHS system.
[image: image8.jpg]MHS

Exportiaypointsiona
sDataToFle.

FieldBiologist Agency

Figure 3‑8 ExportWaypointBiomassDataUse Case Diagram
3.2.4.2.7 Screen mock-ups
[image: image9.png]Fle Help

Blackspruce1

‘Waypoint 2

g
Blackspruce2

=) Waypoint1

() Blacksprucel

(2 Blacksprucez.

=) Waypointz

=) Alder Patch 1

oEm
S
[Sy=tcc
[SE=1
[S=tc1
[S=tc3
o cver
[SE=c
0 cves

12 waypoint3

=18l x]

A

B

Narme CYG1

Base 3d Paint 321 546.294,2026.20
Tip3d Point 33.1,556.294 2036.20

Base Diameter 3.25

Figure 3‑9 MHS Main Application Mockup
[image: image10.png]Help Topics

About MHS

Figure 3‑10 MHS Main Menus Mockup
[image: image11.png]Polhemus Stylus Fosition

x:-32458
e
2753212
Rand]: 20452
Istation]: 1603 508

vz

Base 3dPont 32154234 2026 20

Ti3dPomt 33155 234 2036 20
Base Dismeter

<ok &=

Figure 3‑11 MHS Sampling Wizard Mockup 3

[image: image12.png]Species

Plant Patch Name.

Near Distance From Waynoint

Far Distance From Waynoint

Diameter

Black Spruce Tree

Blackspruces

<ok &=

Figure 3‑12 MHS Application Mockup 4
3.2.5 System Architecture

3.2.5.1 Architectural Style
The MHS system is designed using the Model/View/Controller (MVC) architectural style. The MVC technique decomposes the system into three subsystems; the model which contains data about the problem domain, controller which manages events, and views which presents a view of the model and controller to the user. The MVC technique was chosen for the following reasons

1. The biomass sampling recording model can be well and systematically defined.

2. The user interface and export formats need to render a number of different views to represent the model in different ways.

3. The team’s understanding of the hardware is such that we are designing around and researching the hardware at the same time. So, it is desirable to decouple the inputs (Controller) from the Model. The MVC architecture lends itself to that decoupling.

3.2.5.2 Programming Language

The MHS system will be implemented in a combination of C# and C++. C# is chosen because it is similar to java and readily extensible. This makes it align with the computer science curriculum for use by future students. C++ is chosen to implement a Win32 service because the Polhemus API is very complicated to reuse in .NET. Both languages, C++ and C#, lend themselves to MVC design concepts from the text [Bruegge and Dutoit].

3.2.5.3 3rd Party Components and Hardware

3.2.5.3.1 Polhemus Patriot (3DRP) Hardware & API

The MHS software maps CurrentYearsGrowths spatially. MHS relies on the Polhemus Patriot hardware and software API for interaction with the 3drp. The 3drp will map the 3D line that a CurrentYearsGrowth lays on. The Controller will respond to events from the 3drp. The 3drp portion of the controller must be implemented as an unmanaged C++ Win32 service because of MFC4 dependencies.
3.2.5.3.2 Mitutoyo 265433 (Calipers) & Human Interface Devices (HID)

The MHS software records the diameter of the base of CurrentYearsGrowths. There will be a text box for typing this diameter. Since the Mitutoyo 265433 Calipers act as an HID keyboard input they can be used in place of the keyboard for entering the diameter of a CurrentYearsGrowth.
4 Design Analysis
4.1 Design Considerations

4.1.1 Assumptions and Dependencies

1. 3rd party APIs are assumed correct and accurate.

2. The application is dependent on hardware for measurement precision.

3. The application depends on field biologists for measuring accuracy.

4. The application depends on the Mitutoyo caliper HID drivers.

5. The application depends on the Polhemus Patriot (3drp) API.

6. The application depends on DirectX for .NET managed implementations of 3D data structures.
4.1.2 General Constraints

1. The application is designed for deployment on 32bit Windows 2000, 2003 and XP.
2. The project is complete by April 16, 2006.

3. The application’s host computer must have 2 USB ports; one each for the calipers and 3drp.

4. Power needs to be conserved because the laptop will run primarily on battery without many opportunities for recharge in the field.

5. The application can only open and manipulate a single FieldTrip at a time.

6. The number of CurrentYearsGrowths per plant patch is fixed at 9.

7. Measurements are in metric.
4.1.3 Goals and Guidelines

1. The project seeks to make the application accurate, precise, robust and correct.

2. The application should have an intuitive interface.

3. The interface should be built with common Windows controls (menus, trees, buttons, text boxes, etc.).

4. The project engineer strives for high cohesion with loose coupling between Model modules.

5. The application strives to pass all QA and usability tests.
4.1.4 Development Methods

1. Unit testing is employed to ensure module correctness and accuracy.

2. The View is contained inside a Win32 GUI application.

3. The Model will be a separate C# class hierarchy.
4. The Controller will be in the Win32 application and, in the case of the Polhemus software component, a Win32 service

5. All documentation and source are under revision control using CVS.
4.2 Architecture

4.2.1 Architectural Strategies

1. The application is architected using MVC.

2. The façade pattern is employed for interfacing with the Model from the Controller.

3. MHS uses the HID drivers for the Mitutoyo calipers. This allows the system to treat the calipers as a keyboard input device. No special coding should be required.

4. MHS uses the VRML for 3D rendering.
5. MHS is written in managed C# to maintenance and extension by future students.

6. The Win32 service for the Polhemus device is written in unmanaged C++ to take advantage of the Polhemus API.

7. A Model (FieldTrip) is represented in the UI as a hierarchical tree structure similar to the tree folder view seen in Windows Explorer and Macintosh Finder. A Win32 TreeView class is used for this.
8. A plant patch will be represented as a 3 dimensional rendering of the 3 depth levels. The rendering will give continuous feedback about the 3DRP to help the field biologist orient the pen to the correct spatial locations. Feedback includes
a. Xyz coordinates of the pen

b. |Rand3d| - The distance from the random 3d point generated by the system for that level

c. |Base| - The distance from the 3drp base station

d. Error messages when the pen travels outside of boundaries, including across level boundaries and outside the sample cylindrical volume.

9. MHS uses a modular design to lend itself to extension and maintenance by future software engineers (e.g. computer science students).

10. The Model’s state can be saved to and loaded from a file. A save file represents an entire FieldTrip. The Controller might automatically save the Model to a temporary file at intervals or checkpoints.
11. MHS uses .NET’s existing Open file and Save file dialogs.

12. MHS uses .NET’s existing serialize and deserialize methods to save application (Model) state to file.
13. Waypoint, PlantPatch, and CurrentYearsGrowth Model classes will have a property sheet in the GUI for changing and adjusting the classes’ instance data. The property sheet will be implemented with the DataGrid class.
14. Model files are checked for validity upon opening. Erroneous files are reported to the user.
15. The Model can be exported to a flat file format (CSV) for import into GIS systems.

16. The system should sense hardware errors and disconnects. The errors and potential solutions are reported to the user via dialog boxes.

4.2.2 Top Level System Architecture

1. MHS uses the Model View Controller (MVC) architecture. (See Figure 4‑1 Top Level System Architecture). MVC facilitates the decoupling of user interface and hardware inputs from the problem domain model.

2. The Controller modules will accept inputs from the user via the graphical interface and the attached hardware. The Controller uses FieldTrip’s façade interface to the Model.

3. The View component of the system consists of the program’s GUI interfaces and the text file export format. These are the two ways to display the model.

4. The Model consists of the class hierarchy from the problem domain. The top level of the hierarchy (FieldTrip) will act as a façade class for the Controller to access elements lower in the hierarchy.

5. MHS’ input data consists of an agency’s list of waypoints (GPS coordinates).

6. VRML, Polhemus API, Microsoft’s object serializing methods, and HID input for the calipers are all third party products that are integrated with the system.

[image: image13.emf]Model

Waypoint FieldTrip

1 *

PlantPatch

1 *

CurrentYearsGrowth

1 9

View

Export Format

Controller

PolhemusWin32Service

TCP Socket

Event driven routines that

manipulate the Model and

tell the View to refresh

Figure 4‑1 Top Level System Architecture
4.2.2.1 Subsystem Architecture

1. The single Controller conveys user inputs to the Model using the façade interface class, FieldTrip.

2. The Controller connects to the Polhemus device via a socket to a Windows Services. The Polhemus device cannot be directly implemented in .NET because of its dependency on MFC 4 dlls.
3. The major inputs to the Controller are the 3drp, the calipers, keyboard, touch screen and mouse input.

4. The Model consists of 5 classes; FieldTrip, Waypoint, FieldBiologist, PlantPatch, and CurrentYearsGrowth.

5. The View will be comprised of a large number of UI objects implemented as windows controls.
6. The export file is also considered part of the View because it is another representation of the model.

4.3 Policies and Tactics
4.3.1 General Guidelines

1. The 3drp Win32 service is developed in C++ because this is the language of 3rd party APIs.
2. All components other than the 3drp Win32 service are implemented in C#.

3. MHS will be distributed as a binary code for Win32 on x86.

4. All modules will be independently developed and then tested.

5. No maintenance or technical support will be offered after the project is complete. Though the source code and development resources will be available to project stakeholders.

6. This application is targeted for 32bit Windows 2000 or greater

7. The minimum system requirements for this application are the same as the target OS.

8. The hardware must have 2 x USB ports for the calipers and 3drp

9. Application binaries, runtime resources and manuals will be distributed in an executable installer file like an EXE or MSI.
4.3.2 Coding Guidelines

1. Class attributes are kept private wherever possible to maximize data hiding.

2. The system is decomposed into a series of modules and coupling was reduced wherever possible.

3. Naming conventions follow the generally accepted guidelines for good bject oriented coding: names are descriptive and easy to read.

4. Existing hardware APIs are used.

5. Existing code modules are reused wherever possible. For example .NET’s TreeView or DataGrid.
6. All class variables and methods will be commented using Microsoft’s document generation comment language (similar to javadoc) in order to produce API documentation. Instance variables and portions of methods will be commented as deemed necessary.

7. Every “green fields” class will have an incorporated unit test.

4.4 Detailed System Design

4.4.1 Controller

The Controller portion of the application is implemented in a Win32 application and a Win32 service. It will drive the FieldTrip façade interface to the Model. It will be predominantly based on event handlers for hardware and GUI events. The controller will interface via socket with a Win32 service that implements the 3drp.
4.4.2 View

The View will be comprised of a large number of UI objects including; A 2d panel for rendering a waypoint, a 3d Panel for rendering a plant patch and its CurrentYearsGrowth’s, a TreeView control for representing the model hierarchy, a DataGrid that displays detailed data about the currently selected object.

[image: image14.emf]View

Model

Export Format

Figure 4‑2 View Overview
4.4.3 Model

4.4.3.1 FieldTrip

Classification:

FieldTrip is a C# class that is part of the Model.
Definition:

The FieldTrip describes an expedition to Waypoints by Biologists.

Responsibilities:

The FieldTrip class serves as a container for the Waypoints. It acts as the Model’s façade class for interfacing the View and Controller.

Constraints:

1. A FieldTrip’s name cannot be empty.

2. A FieldTrip must contain at least one Waypoint.
Composition
1. private ArrayList waypoints – The collection of Waypoints that comprise this FieldTrip.
2. private String name – The name of this FieldTrip. Generally, this matches the import file’s name.
3. private ArrayList fieldBiologists – The collection of field biologists performing this fieldtrip.
Uses and Interactions
The FieldTrip class serves as a façade interface for the Controller and View to manipulate and access the model. FieldTrip contains Waypoints.
Processing
A FieldTrip needs to export all the data of its subordinate classes.
Interface and Exports
1. Normal Methods
a. public void FieldTrip() – Default constructor for a FieldTrip.

b. public void FieldTrip(String newname) – A constructor for a FieldTrip named newname.
c. public void FieldTrip(String newname, String fname) – Constructor for a FieldTrip named newname. An agency’s waypoint data is read from fname.

d. public bool ReadImportFile(String fname) – Utility routine to populate this FieldTrip instance with an Agency’s Waypoint data. This replaces existing waypoints data, but preserves the name and FieldBiologists.

e. public String ToString() – Return string representation.

f. public String ToExport(string prefix) – Return a string representation of the CurrentYearsGrowth for exporting to the format that an agency would use. This will be a portion of a CSV file. The output is pre-pended with prefix. This method will use the Model’s other instance classes to generate CSV lines (see 4.4.4.1.2 Export Format).
2. Waypoint Controlling Methods

a. public int getWaypointCount(int wp_idx) – Return the number of waypoints in this FieldTrip.

b. public void setWaypointName(int wp_idx, string nam) – Set the name of the Waypoint at wp_idx to nam.

c. public string getWaypointName(int wp_idx) – Get the name of the Waypoint at wp_idx.

d. public string getWaypointHabitatType(int wp_idx) – Get the habitat type of the Waypoint at wp_idx.

e. public Vector3 getWaypointLatitude(int wp_idx) – Get the latitude of the Waypoint at wp_idx.

f. public Vector3 getWaypointLongitude(int wp_idx) – Get the longitude type of the Waypoint at wp_idx.

g. public void setWaypointStartTime(int wp_idx, DateTime dt) – Set the start time of the Waypoint at wp_idx to dt.

h. public DateTime getWaypointStartTime(int wp_idx) – Get the start time of the Waypoint at wp_idx.

i. public void setWaypointStopTime(int wp_idx, DateTime dt) – Set the stop time of the Waypoint at wp_idx to dt.

j. public DateTime getWaypointStopTime(int wp_idx) – Get the stop time of the Waypoint at wp_idx.

3. Plant Patch Controlling Methods
a. public void addPlantPatch(int wp_idx, String name, String species) – Add the PlantPatch named name of type species to the Waypoint at wp_idx.

b. public void delPlantPatch(int wp_idx, int pp_idx) – Delete the PlantPatch at waypoints[wp_idx].plantpatches[pp_idx].

c. public void setPlantPatchName(int wp_idx, int pp_idx, String nam) – Set the name of the PlantPatch at waypoints[wp_idx].plantpatches[pp_idx]. to nam.

d. public String getPlantPatchName(int wp_idx, int pp_idx) – Get the name of the PlantPatch at waypoints[wp_idx].plantpatches[pp_idx].

e. public void setPlantPatchSpecies(int wp_idx, int pp_idx, String spec) – Set the species of the PlantPatch at waypoints[wp_idx].plantpatches[pp_idx]. to spec.

f. public String getPlantPatchSpecies(int wp_idx, int pp_idx) – Get the species of the PlantPatch at waypoints[wp_idx].plantpatches[pp_idx].

g. public void setPlantPatchDiameter(int wp_idx, int pp_idx, float diam) – Set the diameter of the PlantPatch at waypoints[wp_idx].plantpatches[pp_idx] to diam.

h. public float getPlantPatchDiameter(int wp_idx, int pp_idx) – Get the diameter of the PlantPatch at waypoints[wp_idx].plantpatches[pp_idx].

i. public void setPlantPatchDistance(int wp_idx, int pp_idx, float dist) – Set the distance of the PlantPatch at waypoints[wp_idx].plantpatches[pp_idx] dist meters from the waypoint.

j. public float getPlantPatchDistance(int wp_idx, int pp_idx) – Get the distance of the PlantPatch at waypoints[wp_idx].plantpatches[pp_idx] from the Waypoint.

k. public int getPlantPatchCount(int wp_idx, int pp_idx) – Return the number of PlantPatches at waypoints[wp_idx].plantpatches[pp_idx]..

4. CurrentYearsGrowth Controlling Methods

a. public void setCurrentYearsGrowthBase(int wp_idx, int pp_idx, int cyg_idx, Vector3 b3d) – Set the base coordinate of the CurrentYearsGrowth at waypoints[wp_idx].plantpatches[pp_idx].cygs[cyg_idx]
b. public Vector3 getCurrentYearsGrowthBase(int wp_idx, int pp_idx, int CurrentYearsGrowth_id) – Return the base coordinate of the CurrentYearsGrowth at waypoints[wp_idx].plantpatches[pp_idx].cygs[cyg_idx]

c. public void setCurrentYearsGrowthTip(int wp_idx, int pp_idx, int cyg_idx, Vector3 t3d) - Set the tip coordinate of the CurrentYearsGrowth at waypoints[wp_idx].plantpatches[pp_idx]. cygs [cyg_idx] to the 3dPoint t3d.
d. public Vector3 getCurrentYearsGrowthTip(int wp_idx, int pp_idx, int cyg_idx) – Return the tip coordinate of the CurrentYearsGrowth at waypoints[wp_idx].plantpatches[pp_idx].cygs[cyg_idx]

e. public float getCurrentYearsGrowthDiameter(int wp_idx, int pp_idx, int cyg_idx) – Return the diameter of the CurrentYearsGrowth at waypoints[wp_idx].plantpatches[pp_idx].cygs[cyg_idx]
f. public void setCurrentYearsGrowthDiameter(int wp_idx, int pp_idx, int cyg_idx, float diam) - Set the diameter of the CurrentYearsGrowth at waypoints[wp_idx].plantpatches[pp_idx].cygs[cyg_idx] to diam.
4.4.3.2 Waypoint

Classification:

Waypoint is a C# class that is part of the Model.
Definition:

The Waypoint class describes each single waypoint on the basis of the GPS UTM coordinates provided by the Agency and serves as a container class to PlantPatches.

Responsibilities:

The waypoint class is a container class for PlantPatch data. Waypoint must be able to dump its subordinate classes’ data to file.
Constraints:

1. A Waypoint’s name cannot be empty.

2. A Waypoint’s GPS coordinates cannot be empty.

3. At export a Waypoint must contain greater than zero plant patches.

4. A Waypoint’s latitude, longitude, and habitat type cannot be changed. They must remain as specified by the agency’s import file.
Composition
1. private String name – The textual title of this Waypoint instance.
2. private String habitatType – The coarse habitat type as given by the agency in the import file.
3. private float latitude – The latitude GPS UTM coordinate.
4. private float longitude – The longitude GPS UTM coordinate.
5. private ArrayList plantPatches – The collection of PlantPatches at this waypoint.
6. private DateTime startTime – The OS locale’s date and time that the Waypoint’s sampling was begun.
7. private DateTime stopTime – The OS locale’s date and time that the Waypoint’s sampling was completed.
8. private int totalPlantPatches – The number of PlantPatches currently contained in this Waypoint.
Uses and Interactions
One or more Waypoints will be contained within a FieldTrip. A Waypoint will contain one or more PlantPatches.
Processing
A Waypoint can dump the data from its contained classes for export.
Interface and Exports
1. The private variables listed in Composition will either be implemented as properties or have set/get methods.
2. public void Waypoint(float lat, float lon, String nam, String habitatTyp) – Constructor

3. public int addPlantPatch(PlantPatch pp) – Append a new PlantPatch pp to the collection. Returns the index number of the newly added PlantPatch.

1. public void delPlantPatch(int idx) – Remove the PlantPatch at idx.

4. public String ToString() – Return string representation.

2. public String ToExport(String prefix) – Return a string representation of the PlantPatch for exporting to the format that an agency would use. This will be a portion of a CSV file (see 4.4.4.1.2 Export Format). The output is pre-pended with prefix.

4.4.3.3 PlantPatch

Classification:

PlantPatch is a C# class that is part of the Model.
Definition:

The PlantPatch class serves as a container for 9 CurrentYearsGrowths. A PlantPatch represents a single instance of a particular species at a Waypoint. The statistical model interprets the plant patch as a 3 meter high column regardless of the actual size of the actual plant. The vertical center of the 3 meter column is placed on a randomly generated 2d point on the diameter of the plant patch. This random point is where the 3drp pole is placed for measuring CurrentYearsGrowths.

Responsibilities:

PlantPatch contains 9 CurrentYearsGrowths. PlantPatch generates a random 2D point on its diameter. PlantPatch dumps subordinate class’ data for export.
Constraints:

1. Every PlantPatch contains exactly 9 CurrentYearsGrowths.

2. A PlantPatch’s nearest and farthest edge’s distance from its parent Waypoint must be less than or equal to 25 meters.

3. A PlantPatch’s species’ name must come from the predefined enumeration of species which will be loaded from a text file at application start.

4. The plant patch will be no larger than the length of the 3drp cable.
Composition
1. private String name – The textual title of this PlantPatch instance.
2. private String species – The PlantPatch’s species indentification.
3. private float distance – The PlantPatch’s distance from its parent waypoint measured from the patch’s closest edge.
4. private float diameter – The linear inside diameter of the PlantPatch.
5. private ArrayList CurrentYearsGrowths – The collection of CurrentYearsGrowths at this PlantPatch.
6. private Vector3 randPoints – The 3 randomly generated 3D points from which CurrentYearsGrowths will be targeted for measure. They are of data type Vector3.
Uses and Interactions
PlantPatches are contained within Waypoints. PlantPatches contain CurrentYearsGrowths.
Processing
A PlantPatch can dump the data from its contained classes for export.
Interface and Exports
1. The private variables listed in Composition will either be implemented as properties or have set/get methods.
2. public void PlantPatch(string nam, string specis) – Constructor.

3. public String TtoString() – Return string representation.

3. public String ToExport(string prefix) – Return a string representation of the PlantPatch for exporting to the format that an agency would use. This will be a portion of a CSV file (see 4.4.4.1.2 Export Format). The output is pre-pended with prefix.

4.4.3.4 CurrentYearsGrowth
Classification:

CurrentYearsGrowth is a C# class that fulfills the CurrentYearsGrowth part of the Model.
Definition:

CurrentYearsGrowth is a Model class to add, hold, and retrieve the measurements of a single CurrentYearsGrowth.
Responsibilities:

CurrentYearsGrowth provides private storage variables with access methods for setting and getting the storage variables.
Constraints:

1. At export the distance between tip and base must be greater than 0.

2. At export the diameter of the base must be greater than 0.
Composition
1. private Vector3 base3dPoint - the 3 dimensional xyz coordinate of the base of the CurrentYearsGrowth.

2. private Vector3 tip3dPoint – the 3 dimensional xyz coordinate of the tip of. the CurrentYearsGrowth.

3. private float baseDiameter – the linear distance of the base of the diameter of the CurrentYearsGrowth.
Uses and Interactions
A single CurrentYearsGrowth will be a member of an array of 9 CurrentYearsGrowths contained within a PlantPatch.
Processing
CurrentYearsGrowth is mainly a container method. So its main processing will be the use of access methods to get at its private variables.
Interface and Exports
1. The private variables listed in Composition will either be implemented as properties or have set/get methods.
2. public CurrentYearsGrowth() – Constructor.
3. public String ToString() – Return a string representation of the CurrentYearsGrowth.

4. public String ToExport(string prefix) – Return a string representation of the CurrentYearsGrowth for exporting to the format that an agency would use. This will be a portion of a CSV file (see 4.4.4.1.2 Export Format). The string will be pre-pended with prefix.

5. public float distanceFrom3dPoint(3dPoint p) – Calculate the 3d linear distance that the base of a CurrentYearsGrowth is from the 3d point p.
6. private float length() – Return the 3d linear distance from base to tip of this CurrentYearsGrowth.
7. private int calcDepthLevel() – Based on the z coordinate of the CurrentYearsGrowth’s base, return which depth level this CurrentYearsGrowth is a member of.

4.4.3.5 PolhemusService

Classification:

PolhemusService is a C++ class that implements the 3drp.
Definition:

PolhemusService is a class that implements a Win32 service.
Responsibilities:

PolhemusService is a class that implements a Win32 service that receives events from the Polhemus 3drp and relays them to the Controller.

Constraints:

Composition:
Uses and Interactions
PlantPatches are connected to by the controller over a socket.
Processing
A controller understands the Polhemus API and can send events over a socket to the controller for use by the MHS GUI application.
Interface and Exports
1. public: TestService()

2. public: ~TestService()

3. public: virtual void OnStart(int argc, LPTSTR* argv)

4. public: virtual void OnStop()

5. public: virtual void OnPause()

6. public: virtual void OnContinue()

7. private: bool m_bStop;

8. private: void openSocket()

9. private: void sendPolhemusEvent()
4.4.4 File Formats

4.4.4.1.1 Import Format

The import file format that FieldTrip expects from an agency is a plain text file with Waypoint records (instances) separated by line (e.g one per line) and values separated by commas. Literal commas in a value (rather than as a record separator) are escaped with the backslash (‘\’) character (e.g. “\,and then”). White space between commas is ignored. Lines beginning with # are ignored as comments. Each Waypoint record contains 3 or, optionally, 4 values:

1. latitude – UTM latitude of a Waypoint

2. longitude – UTM longitude of waypoint

3. habitat type – a text string with the agency’s coarse description of the habitat type

4. [name] – optionally, an agency friendly string describing the waypoint

4.4.4.1.2 Export Format

The export format follows the same comma separated conventions as (4.4.4.1.1). It will output 44 or more values per record. The export record can have a list of biologist’s names appended to the end of the record (separated by commas of course). So the record size is variable after the 44thth entry.

1. lattitude – UTM lattitude of Waypoint
2. longitude – UTM longitude of Waypoint
3. habitat type – Agency’s coarse description
4. waypoint name – Waypoint’s textual name (or possibly agency’s friendly name)
5. date stamp – The finish time of the PlantPatch
6. plant patch name – The textual name of the PlantPatch
7. plant patch species – The species of the PlantPatch
8. CurrentYearsGrowth1dist – The CurrentYearsGrowth’s bases’ distance from the random point at that level

9. CurrentYearsGrowth1length – The CurrentYearsGrowth’s length from base to tip

10. CurrentYearsGrowth1diameter – The CurrentYearsGrowth’s base diameter

11. CurrentYearsGrowth1level – The CurrentYearsGrowth’s depth level

12. CurrentYearsGrowth2dist

13. CurrentYearsGrowth2length

14. CurrentYearsGrowth2diameter

15. CurrentYearsGrowth2level

16. CurrentYearsGrowth3dist

17. CurrentYearsGrowth3length

18. CurrentYearsGrowth3diameter

19. CurrentYearsGrowth3level

20. CurrentYearsGrowth4dist

21. CurrentYearsGrowth4length

22. CurrentYearsGrowth4diameter

23. CurrentYearsGrowth4level

24. CurrentYearsGrowth5dist

25. CurrentYearsGrowth5length

26. CurrentYearsGrowth5diameter

27. CurrentYearsGrowth5level

28. CurrentYearsGrowth6dist

29. CurrentYearsGrowth6length

30. CurrentYearsGrowth6diameter

31. CurrentYearsGrowth6level

32. CurrentYearsGrowth7dist

33. CurrentYearsGrowth7length

34. CurrentYearsGrowth7diameter

35. CurrentYearsGrowth7level

36. CurrentYearsGrowth8dist

37. CurrentYearsGrowth8length

38. CurrentYearsGrowth8diameter

39. CurrentYearsGrowth8level

40. CurrentYearsGrowth9dist

41. CurrentYearsGrowth9length

42. CurrentYearsGrowth9diameter

43. CurrentYearsGrowth9level

44. biologists name1
45. [biologists name2]

46. […]
4.4.4.1.3 Save File Format

The save file format will use Microsoft’s native serialize and deserialize methods. This will allow the application to save the model exactly as it is in memory. The View and Controller will be volatile. The View and Controller will initialize their states at program start and when a serialized model is loaded.
5 References

· CS401 Moose Habitat Survey Application, fall 2005, Dr. Don Spalinger, University of Alaska Anchorage

· Object Oriented Software Engineering using UML, Patterns, and Java by Bernd Bruegge and Allen Dutoit [ISBN 0-13-047110-0] http://wwwbruegge.in.tum.de/OOSE/WebHome

· Applying Robustness Analysis on the Model–View–Controller (MVC) Architecture in ASP.NET Framework, using UML http://www.codeproject.com/aspnet/ModelViewController.asp
· Polhemus makers of the PATRIOT 3DRP http://polhemus.com/PATRIOT.htm
· Rapid Development by Steve McConnell [ISBN 0-07-285060-4]

· Wikipedia GIS Page, http://en.wikipedia.org/wiki/GIS
· Wikipedia GPS Page, http://en.wikipedia.org/wiki/Gps
· Wikipedia UTM Page,
http://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
· Mitutoyo makers of USB Calipers http://www.mitutoyo.com/

· Quantifying the forest http://www.hubbardbrook.org/yale/watersheds/w6/biomass-stop/stop-7.htm

· Estimating Biomass and Biomass Change of Tropical Forests: a Primer http://www.fao.org/docrep/W4095E/w4095e00.htm#Contents

· SOPAC/ICCEPT Pacific Islands Biomass Energy Resource Assessment Training Course http://www.iccept.ic.ac.uk/research/projects/SOPAC/PDFs/07%20Methodologies.ppt%20%5BRead-Only%5D.pdf

· Development of Software Tools for Ecological Field Studies Using ArcPad http://gis.esri.com/library/userconf/proc03/p0333.pdf

· Crop Circle™ ACS-210 Plant Canopy Reflectance Sensor http://www.hollandscientific.com/literature/Manual.pdf

· Software for Computing Plant Biomass - BIOPAK Users Guide http://www.fs.fed.us/pnw/pubs/gtr340.pdf

· Wordpress personal publishing platform http://wordpress.org/

· How to call C++ code from Managed, and vice versa (Interop) http://blogs.msdn.com/deeptanshuv/archive/2005/06/26/432870.aspx
· Converting Managed Extensions for C++ Projects from Pure Intermediate Language to Mixed Mode http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmex/html/vcconconvertingmanagedextensionsforcprojectsfrompureintermediatelanguagetomixedmode.asp
· OtterBox Table PC Case http://www.otterbox.com/products/pc_cases/tablet/

· Panasonic ToughBook http://panasonic.com/toughbook

· Simple service base class for Windows http://www.codeproject.com/system/ServiceBase.asp
6 Revision History

2006-02-10 Requirements Analysis.doc and Design Analysis.doc from CS401 were merged together into this document. The document was updated to reflect refined requirements and design changes.
February 14, 2006

_1201065394.vsd
Tree

Survey Pole2

Survey Pole1

FieldBiologist

Diameter of Patch

Random Point on Diameter

3drp Pole

_1201069579.vsd
MeasureCYG Steps
 1 Map Base 3D Point
 2 Map Tip 3D Point
 3 Measure Base Diameter

1

3

2

_1201119819.vsd
Model

Waypoint

FieldTrip

1

*

PlantPatch

1

*

CurrentYearsGrowth

1

9

View

Export Format

Controller

PolhemusWin32Service

TCP Socket

_1201120162.vsd
Model

Export Format

View

_1201116259.vsd
A

C

C

D

15 meter radius

_1201066077.vsd
3drp

1 meter

2 meters

3 meters

3drp Pole

_1201064781.vsd
Tree

PlantPatch

Survey Pole

Survey Pole

FieldBiologist

PlantPatch Near Distance

PlantPatch Far Distance

Diameter of Patch

WayPoint

_1201064246.vsd
System

FieldBiologist

MeasureCYG

MeasurePlantPatch

PlantPatch

Waypoint

«uses»

ConductFieldTrip

«uses»

SamplePlantPatchCYG
s

«uses»

MHS

3D Radio Pen

USB Calipers

Current Years Growth

