Moose Habitat Surveyer (MHS)
Design Document

University of Alaska Anchorage

CS401 Software Engineering

Fall, 2005

“Cold Moose Chasers (Cold MC’s)”
Max Konovalov, Software Engineer
Chris Kulhanek, Software Engineer
Jim Weller, Lead Software Engineer
Project Owner
Dr. Don Spalinger, Biologist
Table of Contents
11
Introduction

11.1
Purpose

11.2
Audience

11.3
Scope

11.4
Definitions, acronyms, and abbreviations

21.5
Document Conventions

21.6
References

31.7
Summary

32
System Overview

32.1
System Description

32.2
System Architecture

32.2.1
Architectural Style

42.2.2
Programming Language

42.2.3
3rd Party Components and Hardware

42.2.3.1
Direct 3D Windows Render Control

42.2.3.2
Polhemus Patriot (3DRP) Hardware & API

42.2.3.3
Mitutoyo 265433 (Calipers) & Human Interface Devices (HID)

43
Design Considerations

43.1
Assumptions and Dependencies

43.2
General Constraints

53.3
Goals and Guidelines

53.4
Development Methods

54
Architectural Strategies

65
System Architecture

75.1
Subsystem Architecture

76
Policies and Tactics

76.1
General Guidelines

76.2
Coding Guidelines

87
Detailed System Design

87.1
Controller

87.2
View

97.3
Model

97.3.1
FieldTrip

127.3.2
Waypoint

137.3.3
PlantPatch

147.3.4
CurrentYearGrowth

157.4
Other

157.4.1
File Formats

157.4.1.1
Import Format

157.4.1.2
Export Format

167.4.1.3
Save File Format

Table of Figures
6Figure 5‑1 System Architecture

9Figure 7‑1 View Overview

1 Introduction
1.1 Purpose
The purpose of this document is to describe a detailed design analysis of the Moose Habitat Surveyer (MHS). MHS is a system to facilitate the collection of biomass data from outdoor study areas.
1.2 Audience

This document is written for software engineers and document reviewers. The software engineers are CS401 students, Max Konovalov, Chris Kulhanek, and Jim Weller. The reviewers will include Dr. Kenrick Mock (Computer Science), Dr. Don Spalinger (Biology) and the students of the CS401 course. All represent the University of Alaska Anchorage.
1.3 Scope

This document describes the software (models and classes) and hardware (external input devices) that comprise the MHS system. Software is expressed as textual descriptions and UML diagrams. Data and third party interactions are expressed as textual descriptions. The document aims for completeness in describing the application domain’s relationship to a Win32 application.
1.4 Definitions, acronyms, and abbreviations
· Agencies are organizations external to the system that request the measurement of biomasses at waypoints. Agencies supply waypoints and species for field trips.
· 3-Dimensional Radio Pen (3DRP or PATRIOT) is a 3 dimensional tracking device from Polhemus which allows the mapping and recording of 3 dimensional points.
· Current Annual Growth (CAG) or Current Year’s Growth (CYG) is a biological term used to describe new growth on plants for the current year. CYGs are good moose forage.
· Calipers are a device for measuring small linear distances between two points. Like the outside diameter of a cylinder. Calipers are used to measure the diameter of a CYG’s base. They have a USB interface to the computer system.

· Depth Level (depth) refers to the height in a plant patch at which a CYG exists. It is broken into 0-1 meter, 1-2 meters, and 2-3 meters. Low forage could be covered by snow in the winter. High forage is available to the tall moose.
· Field Trip is an excursion to a study site to measure CYGs in the area. Field trips are composed of a series of waypoints.
· Field Biologist is a user of the system that participates in field trips to waypoints, sampling biomass data.
· Geographic Information System (GIS). From http://wikipedia.org
“[…] GIS is a system for creating and managing spatial data and associated attributes. In the strictest sense, it is a computer system capable of integrating, storing, editing, analyzing, and displaying geographically-referenced information. In a more generic sense, GIS is a "smart map" tool that allows users to create interactive queries (user created searches), analyze the spatial information, and edit data.”
Agencies will export waypoints from GIS systems. Exported biomass data will likely be store in or in relation to a GIS system.
· Global Positioning System (GPS). From http://wikipedia.org
“[…] GPS […] is a satellite navigation system used for determining one's precise location and providing a highly accurate time reference almost anywhere on Earth or in Earth orbit.”
Field biologists will use GPS to navigate to waypoints.
· Laser Range Finder is a tool for measuring large linear distances. It is used to measure a plant patch’s distance from a waypoint and to interpolate a plant patches diameter.
· Plant Patch (Patch) is a single instance of a particular plant species. From the perspective of the system, a patch is a location where CYGs will be measured at three different depth levels.
· Waypoint refers to a specific coordinate location exported from GIS and navigable by GPS. A waypoint is the center of a circle with a 15 meter radius in which plant patches will be sampled.
1.5 Document Conventions

1. References to the Model View and Controller from the MVC architectural style will appear with the first letter upper cased.
1.6 References

· CS401 Moose Habitat Survey Application, fall 2005, Dr. Don Spalinger, University of Alaska Anchorage
· Object Oriented Software Engineering using UML, Patterns, and Java by Bernd Bruegge and Allen Dutoit [ISBN 0-13-047110-0] http://wwwbruegge.in.tum.de/OOSE/WebHome
· Polhemus makers of the PATRIOT 3DRP http://polhemus.com/PATRIOT.htm
· Rapid Development by Steve McConnell [ISBN 0-07-285060-4]
· Wikipedia GIS Page, http://en.wikipedia.org/wiki/GIS
· Wikipedia GPS Page, http://en.wikipedia.org/wiki/Gps
· Mitutoyo makers of USB Calipers http://www.mitutoyo.com/
· Developing Software with UML: Object-Oriented Analysis and Design in Practice, Bernd Oestereich

· Lecture Slides, CS401 Software Engineering, Dr. Kenrick Mock, University of Alaska Anchorage

· CppDoc - A C++ documentation system based on code comments similar to javadoc. http://www.cppdoc.com/
1.7 Summary
Measuring density of certain plant species and their current year’s growth is important for a number of biological applications, including determining availability of moose forage. There is currently no equivalent system. Older methodologies involve working in site grids much like archeology. These older methodologies try to map an entire site and make complete models of plants. The proposed methodology will use computers, a random sparse sampling model, and statistical projections. This system intends to implement the measurement and recording component of the new methodology.
2 System Overview
2.1 System Description
The purpose of this system is to facilitate the collection of biomass data from outdoor study areas. The system will allow external agencies to define areas to be studied, field biologists to engage in systematic sample recording, and data export for analysts to analyze the resultant data sets. The system will combine existing hardware and computing platforms into a single biomass sampling suite.

The application will allow a group of field biologists to use a portable PC (generally a tablet PC) which is integrated with tactile data sampling hardware to make measurements and counts of plants in a predefined space. The goal of the system is to retrieve systematic data samples from pre-chosen Lat/Lon waypoints and export it into a format that lends to analysis.
2.2 System Architecture

2.2.1 Architectural Style
The MHS system is designed using the Model/View/Controller (MVC) architectural style. The MVC technique decomposes the system into three subsystems; the model which contains data about the problem domain, controller which manages events, and views which presents a view of the model and controller to the user. The MVC technique was chosen for the following reasons
1. The biomass sampling model is well and systematically defined.
2. The user interface and export formats need to render a number of different views to represent the model in different ways.
3. The team’s understanding of the hardware is such that we are designing around and researching the hardware at the same time. So, it is desirable to decouple the inputs (Controller) from the Model. The MVC architecture lends itself to that decoupling.
2.2.2 Programming Language

The MHS system will be implemented in C++. C++ was chosen because that is the language that the API that the 3DRP is implemented in. Plus, it gives the system access to Microsoft’s Direct3D API for rendering models. We could have made the 3DRP controller module an external library like COM object, DLL or Runtime, but that would have required more research effort and hence time on an already heavy research project. Since C++ is an object oriented language, it still lends itself to MVC design concepts from the text [Bruegge and Dutoit].
2.2.3 3rd Party Components and Hardware

2.2.3.1 Direct 3D Windows Render Control

The MHS software will render a plant patch in a fixed 3 dimensional view in the UI. MHS will use Microsoft’s Direct3D API to show 3d renderings of a PlantPatch’s CYG’s.
2.2.3.2 Polhemus Patriot (3DRP) Hardware & API

The MHS software maps CYGs spatially. MHS relies on the Polhemus Patriot hardware and software API for interaction with the 3drp. The 3drp will map the 3D line that a CYG lays on. The Controller will respond to events from the 3drp.
2.2.3.3 Mitutoyo 265433 (Calipers) & Human Interface Devices (HID)
The MHS software records the diameter of the base of CYG’s. There will be a text box for typing this diameter. Since the Mitutoyo 265433 Calipers act as an HID keyboard input they can be used in place of the keyboard for entering the diameter of a CYG.
3 Design Considerations

3.1 Assumptions and Dependencies

1. 3rd party APIs are assumed correct and accurate.

2. 3D rendering will be done in Microsoft Direct3d.
3. The application is dependent on hardware and field biologists for measuring accuracy.

4. The application depends on the Mitutoyo caliper HID drivers.
5. The application depends on the Polhemus Patriot (3drp) API.
3.2 General Constraints

1. The application is designed for deployment on Windows
2. The application’s host OS must have DirectX 8 or greater installed.
3. The project is complete by Dec 5 2005.
4. The application’s host computer must have 2 USB ports; one each for the calipers and 3drp.

5. Power needs to be conserved because the laptop will run primarily on battery without many opportunities for recharge in the field.

6. The application can only open and manipulate a single FieldTrip at a time.
3.3 Goals and Guidelines

1. The project seeks a grade of B or higher on all project related course work.
2. The project seeks to make the application accurate, robust and correct.
3. The application should have an intuitive interface.
4. The interface should be built with common Windows controls (menus, trees, buttons, text boxes, etc.).
5. The project engineers are striving for high cohesion with loose coupling between Model modules.

6. The application strives to pass all QA and usability tests.
3.4 Development Methods

1. Unit testing is employed to ensure module correctness and accuracy.
2. The Controller and the View are both contained inside a Win32 GUI application.

3. The Model will be a separate C++ class hierarchy.
4. All documentation and source are under revision control using CVS.
4 Architectural Strategies

1. The application was architected using MVC.

2. The façade pattern is employed for interfacing with the Model from the Controller.

3. MHS uses the Polhemus C++ API for receiving input from the 3DRP.
4. MHS uses the HID drivers for the Mitutoyo calipers. This allows the system to treat the calipers as a keyboard input device. No special driver code should be required.

5. MHS uses the Microsoft DirectX Direct3D API for rendering three dimensional models.

6. MHS is written in C++ to take advantage of the Polhemus API and the Microsoft Direct3D API.

7. The model is represented in the UI as a hierarchical tree structure similar to the tree folder view seen in Windows Explorer and Macintosh Finder.
8. A plant patch will be represented as a 3 dimensional rendering of the 3 depth levels. The rendering will give continuous feedback about the 3DRP to help the field biologist orient the pen to the correct spatial locations.

9. MHS uses a modular design to lend itself to revision and maintenance by future software engineers (e.g. CS401 students).
10. The model’s state can be saved to and loaded from a file. A file represents a field trip. The controller auto saves the model after every plant patch. If a model hasn’t yet been saved by the user, the auto save feature will use a temporary file.
11. MHS uses VC++’s existing Open file and Save file dialogs.

12. MHS uses VC++’s existing serialize and deserialize methods.

13. Each model class will have a property sheet in the GUI for changing and adjusting the class’ data.

14. Model files are checked for validity upon opening.

15. The model can be exported to a flat file format (CSV) for import into GIS systems.
16. The system senses hardware errors and disconnects. The errors and potential solutions are reported to the user via dialog boxes.

17. The bridge pattern is used for interfacing with the hardware components to allow simple windows controls and manual measure methods to be used in the event that hardware is not implemented, malfunctioning, or unavailable.

18. Components within the Model have protected variables. The Model can be considered a unit in the MVC style. Hence, it is implemented as a C++ package.
5 System Architecture

[image: image1.jpg]Win32 Application Long2dTextBox

Long2deasure
) 1 [rgetDistance() LaserRangeFinder
View
menus, folding tree, Controller
directx picturebox, buttons, Event driven routines that
text boxes, property sheets, manipulate the model
dialogues, wizards, icons e
3dMapper
Frorab3asample
g ple) % S
ShorZdTextBox
!
| | ShorizdMeasurer v\<
|
| A
e -
[FgetDistance
1 geiDetancey Calipers
P
i
B’
i
P
IR

Model; |
i
FieldTrip Waypoint PlantPatch CurrentYearsGrowth

Figure 5‑1 System Architecture
1. MHS uses the Model View Controller (MVC) architecture. MVC facilitates the decoupling of user interface and hardware inputs from the problem domain model.

2. The Controller modules will accept inputs from the user via the graphical interface and the attached hardware. The controller’s relationship to the model will use the façade design pattern where a Field Trip is the façade interface to the model.

3. The View component of the system consists of the program’s GUI interface and the text file export format. These are the two ways to display the model.

4. The Model consists of the class hierarchy from the problem domain. The top level of the hierarchy (Field Trip) will act as a façade class for the Controller to access elements lower in the hierarchy.
5. MHS’ input data consists of an agency’s list of waypoints (GPS coordinates).
6. Direct3D, Polhemus API, Microsoft’s object serializing methods, and HID input for the calipers are all third party products that are integrated with the system.
5.1 Subsystem Architecture

1. The single Controller conveys user inputs to the Model using the façade interface class, FieldTrip.
2. The major input components of the Controller are the 3drp, the calipers, keyboard, touch screen and mouse input.

3. The Model consists of 5 major classes; FieldTrip, Waypoint, FieldBiologist, PlantPatch, and CYG.
4. The View will be comprised of a large number of UI objects including; a 3d picture box for rendering a plant patch and its CYG’s, a tree control for representing the model hierarchy, a data area (text area control) that displays detailed data about the currently selected object.

5. The export file is also considered part of the View because it is another representation of the model.

6. Model variable below FieldTrip will be protected to allow the façade class to access them directly.

6 Policies and Tactics
6.1 General Guidelines

1. Modules are developed in C++ because this is the language of 3rd party APIs.

2. MHS will be distributed as a binary code for Win32 on x86.

3. All modules will be independently developed and then tested.

4. No maintenance or technical support will be offered after the project is complete. Though the source code and development resources will be available to project stakeholders.

5. This application is targeted for Windows XP SP1 or greater
6. The hardware requirements for this application are the same as the target OS.

7. The hardware must have 2 x USB for calipers and 3drp

8. Application binaries and runtime resources will be distributed in an executable installer file.

6.2 Coding Guidelines

1. Class attributes are kept private wherever possible to maximize data hiding. The Model class is an exception where protected variables are used within the namespace
2. The system is decomposed into a series of modules and coupling was reduced wherever possible.
3. Naming conventions follow the generally accepted guidelines for good Object Oriented coding: names are descriptive and easy to read.

4. Existing hardware APIs are utilized wherever possible.

5. Existing code modules are reused wherever possible.

6. All class variables and methods will be commented using Microsoft document generation comment language (similar to javadoc) in order to produce API documentation. Instance variables and portions of methods will be commented as deemed necessary.

7. Each class will have an incorporated unit test.
8. Each class will have a destructor.
7 Detailed System Design

7.1 Controller

The Controller portion of the application is implemented in a Win32 application. It will drive the FieldTrip façade interface to the Model. It will be predominantly based on event handlers for hardware and GUI events.
7.2 View

The View component is the same Win32 application as the Controller. The View will be comprised of a tree component describing the model and allowing selection of specific components. A 3d picture box rendering the current PlantPatch, and a properties sheet for viewing and editing the properties of the various model components.

[image: image2.jpg]12 Waypoint 1
=1) Waypoint 2
1 Black spruce
12 Green Alder
=1 () Waypoint 3
2 Black spruce
El D Green Alder
@ Patch1
B patch2

[Status Console

Active Waypoint: ~ Wonder Lake Denali
GPS Coordinates: ~ Latitude: 61d44'18"N

Figure 7‑1 View Overview
7.3 Model

7.3.1 FieldTrip

Classification:

FieldTrip is a C++ class that is part of the Model.
Definition:

The FieldTrip describes an expedition to Waypoints by Biologists.
Responsibilities:

The FieldTrip class serves as a container for the Waypoints. It acts as the Model’s façade class for interfacing the View and Controller.

Constraints:

1. A FieldTrip’s name cannot be empty.

2. A FieldTrip must have at least one element in its fieldBiologists collection.
3. A FieldTrip must contain at least one Waypoint.
Composition
1. private Vector<Waypoint> waypoints – The collection of Waypoints that comprise this FieldTrip.
2. private string name – The name of this fieldtrip. Generally, matches the filename.
3. private Vector<string> fieldbiologists – The collection of field biologists performing this fieldtrip.
Uses and Interactions
The FieldTrip class serves as a façade interface for the Controller and View to manipulate and access the model. FieldTrip contains Waypoints.
Processing
A FieldTrip needs to export all the data of its subordinate classes.
Interface and Exports
1. Normal Methods
a. public void FieldTrip(string name, string fname) – Constructor for a FieldTrip named name. Agencies waypoint data is read from fname.

b. public void ~FieldTrip() – Destructor.

c. public string toString() – Return string representation.

d. public string toExport(string prefix) – Return a string representation of the CurrentYearGrowth for exporting to the format that an agency would use. This will be a portion of a CSV file. The output is pre-pended with prefix.

2. Waypoint Controlling Methods
a. public int getWaypointCount(int wp_idx) – Return the number of waypoints in this FieldTrip.

b. public void setWaypointName(int wp_idx, string nam) – Set the name of the Waypoint at wp_idx to nam.

c. public string getWaypointName(int wp_idx) – Get the name of the Waypoint at wp_idx.

d. public string getWaypointHabitatType(int wp_idx) – Get the habitat type of the Waypoint at wp_idx.

e. public Coordinate getWaypointLatitude(int wp_idx) – Get the latitude of the Waypoint at wp_idx.

f. public Coordinate getWaypointHabitatLongitude(int wp_idx) – Get the longitude type of the Waypoint at wp_idx.

g. public void setWaypointStartTime(int wp_idx, DateTime dt) – Set the start time of the Waypoint at wp_idx to dt.

h. public DateTime getWaypointStartTime(int wp_idx) – Get the start time of the Waypoint at wp_idx.

i. public void setWaypointStopTime(int wp_idx, DateTime dt) – Set the stop time of the Waypoint at wp_idx to dt.

j. public DateTime getWaypointStopTime(int wp_idx) – Get the stop time of the Waypoint at wp_idx.

3. Plant Patch Controlling Methods
a. public void addPlantPatch(int wp_idx, string name, string species) – Add the PlantPatch named name of type species to the Waypoint at wp_idx.

b. public void delPlantPatch(int wp_idx, int pp_idx) – Delete the PlantPatch at waypoints[wp_idx].plantpatches[pp_idx].

c. public void setPlantPatchName(int wp_idx, int pp_idx, string nam) – Set the name of the PlantPatch at waypoints[wp_idx].plantpatches[pp_idx]. to nam.

d. public string getPlantPatchName(int wp_idx, int pp_idx) – Get the name of the PlantPatch at waypoints[wp_idx].plantpatches[pp_idx].

e. public void setPlantPatchSpecies(int wp_idx, int pp_idx, string spec) – Set the species of the PlantPatch at waypoints[wp_idx].plantpatches[pp_idx]. to spec.

f. public string getPlantPatchSpecies(int wp_idx, int pp_idx) – Get the species of the PlantPatch at waypoints[wp_idx].plantpatches[pp_idx].

g. public void setPlantPatchDiameter(int wp_idx, int pp_idx, int diam) – Set the diameter of the PlantPatch at waypoints[wp_idx].plantpatches[pp_idx] to diam.

h. public int getPlantPatchDiameter(int wp_idx, int pp_idx) – Get the diameter of the PlantPatch at waypoints[wp_idx].plantpatches[pp_idx].

i. public void setPlantPatchDistance(int wp_idx, int pp_idx, int dist) – Set the distance of the PlantPatch at waypoints[wp_idx].plantpatches[pp_idx] dist meters from the waypoint.

j. public int getPlantPatchDistance(int wp_idx, int pp_idx) – Get the distance of the PlantPatch at waypoints[wp_idx].plantpatches[pp_idx] from the Waypoint.

k. public int getPlantPatchCount(int wp_idx, int pp_idx) – Return the number of PlantPatches at waypoints[wp_idx].plantpatches[pp_idx]..

4. CYG Controlling Methods
a. public void setCygBase(int wp_idx, int pp_idx, int cyg_idx, 3dPoint b3d) – Set the base coordinate of the CYG at

b. public 3dPoint getCygBase(int wp_idx, int pp_idx, int cyg_id) – Return the base coordinate of the CYG at waypoints[wp_idx].plantpatches[pp_idx].cygs[cyg_idx]
c. public void setCygTip(int wp_idx, int pp_idx, int cyg_idx, 3dPoint t3d) - Set the tip coordinate of the CYG at waypoints[wp_idx].plantpatches[pp_idx].cygs[cyg_idx] to the 3dPoint t3d.
d. public 3dPoint getCygTip(int wp_idx, int pp_idx, int cyg_id) – Return the tip coordinate of the CYG at waypoints[wp_idx].plantpatches[pp_idx].cygs[cyg_idx]

e. public int getCygDiameter(int wp_idx, int pp_idx, int cyg_id) – Return the diameter of the CYG at waypoints[wp_idx].plantpatches[pp_idx].cygs[cyg_idx]
f. public void setCygDiameter(int wp_idx, int pp_idx, int cyg_idx, int diam) - Set the diameter of the CYG at waypoints[wp_idx].plantpatches[pp_idx].cygs[cyg_idx] to diam.
7.3.2 Waypoint

Classification:

Waypoint is a C++ class that is part of the Model.
Definition:

The Waypoint class describes each single waypoint on the basis of the GPS coordinates provided by the Agency and serves as a container class PlantPatches.

Responsibilities:

The waypoint class is a container class for PlantPatch data. Waypoint must be able to dump its subordinate classes data to file.
Constraints:

1. A Waypoint’s name cannot be empty.

2. A Waypoint’s GPS coordinates cannot be empty.

3. At export a Waypoint must contain greater than zero plant patches.

4. A Waypoint’s latitude, longitude, and habitat type cannot be changed.
Composition
1. protected string name – The textual title of this Waypoint instance.
2. protected string habitatType – The coarse habitat type as given by the agency in the import file.
3. protected Coordinate latitude – The latitude GPS coordinate.
4. protected Coordinate longitude – The longitude GPS coordinate.
5. protected Vector<PlantPatch> plantPatches – The collection of PlantPatches at this waypoint.
6. protected DateTime startTime – The locale’s date and time that the Waypoint’s sampling was begun.
7. protected DateTime stopTime – The locale’s date and time that the Waypoint’s sampling was completed.
8. protected int totalPlantPatches – The number of PlantPatches currently contained in this Waypoint.
Uses and Interactions
One or more Waypoints will be contained within a FieldTrip. A Waypoint will contain one or more PlantPatches.
Processing
A Waypoint can dump the data from its contained classes for export.
Interface and Exports
1. public void Waypoint(Coordinate lat, Coordinate lon, string nam, string habitatTyp) – Constructor
2. public void ~Waypoint() – Destructor.

3. public int addPlantPatch(PlantPatch pp) – Append a new PlantPatch pp to the collection. Returns the index number of the newly added PlantPatch.
1. public void delPlantPatch(int idx) – Remove the PlantPatch at idx.

4. public string toString() – Return string representation.

2. public string toExport(string prefix) – Return a string representation of the PlantPatch for exporting to the format that an agency would use. This will be a portion of a CSV file. The output is pre-pended with prefix.

7.3.3 PlantPatch
Classification:

PlantPatch is a C++ class that is part of the Model.
Definition:

The PlantPatch class serves as a container for 9 CYGs. A PlantPatch represents a single instance of a particular species at a Waypoint. The statistical model interprets the plant patch as a 3 meter high column regardless of the actual size of the plant instance. The vertical center of the 3 meter column is placed on a randomly generated 2d point on the diameter of the plant patch. This random point is where the 3drp pole is placed for measuring CYGs.
Responsibilities:

PlantPatch contains CYGs. PlantPatch generates a random 2D point on its diameter. Plant patch dumps subordinate class’ data for export.
Constraints:

1. Every PlantPatch contains exactly 9 CYGs.
2. A PlantPatch’s nearest edge’s distance from its parent Waypoint must be less than or equal to 15 meters.

3. A PlantPatch’s species’ name must come from the predefined enumeration of species which will be loaded from an INI file at application start.
4. The plant patch will be no larger than the length of the 3DRP cable.
Composition
1. protected string name – The textual title of this PlantPatch instance.
2. protected string species – The PlantPatch’s species indentification.
3. protected int distance – The PlantPatch’s distance from its parent waypoint measured from the patch’s closest edge.
4. protected int diameter – The linear inside diameter of the PlantPatch.
5. protected CurrentYearGrowth[9] cygs – The collection of CYGs at this PlantPatch.
6. protected 3dPoint[3] randPoints – The 3 randomly generated 3D points from which CYGs will be targeted for measure.
Uses and Interactions
PlantPatches are contained within Waypoints. PlantPatches contain CYGs.
Processing
A PlantPatch can dump the data from its contained classes for export.
Interface and Exports
1. public void PlantPatch(string nam, string specis) – Constructor.
2. public ~PlantPatch () – Destructor.

3. public string toString() – Return string representation.

3. public string toExport(string prefix) – Return a string representation of the PlantPatch for exporting to the format that an agency would use. This will be a portion of a CSV file. The output is pre-pended with prefix.
7.3.4 CurrentYearGrowth

Classification:
CurrentYearGrowth is a C++ class that fulfills the CYG part of the Model.
Definition:
CurrentYearGrowth is a Model class to add, hold, and retrieve the measurements of a single CYG.
Responsibilities:
CurrentYearGrowth provides hidden storage variables with accessor methods for setting and getting the storage variables.
Constraints:
1. At export the distance between tip and base must be greater than 0.
2. At export the diameter of the base must be greater than 0.
Composition
1. protected 3DPoint base3dPoint - the 3 dimensional xyz coordinate of the base of the CYG.
2. protected 3DPoint tip3dPoint – the 3 dimensional xyz coordinate of the tip of. the CYG.
3. protected float baseDiameter – the linear distance of the base of the diameter of the CYG.
Uses and Interactions
A single CurrentYearGrowth will be a member of an array of 9 CYGs contained within a PlantPatch.
Processing
CurrentYearGrowth is mainly a container method. So its main processing will be the use of accessor methods to get at its hidden variables.
Interface and Exports
4. public CurrentYearGrowth() – Constructor.
5. public ~CurrentYearGrowth() – Destructor.
6. public string toString() – Return a string representation of the CYG.
7. public string toExport(string prefix) – Return a string representation of the CYG for exporting to the format that an agency would use. This will be a portion of a CSV file. The string will be pre-pended with prefix.
8. private float distanceFrom3dPoint(3dPoint p) – Calculate the 3d linear distance that the base of a CYG is from the 3d point p.
9. private float length() – Return the 3d linear distance from base to tip of this CYG.
10. private int calcDepthLevel() – Based on the z coordinate of the CYG’s base, return which depth level this CYG is a member of.
11. public string toString() – Return string representation.

12. public string toExport(string prefix) – Return a string representation of the CurrentYearGrowth for exporting to the format that an agency would use. This will be a portion of a CSV file. The output is pre-pended with prefix.

7.4 Other

7.4.1 File Formats
7.4.1.1 Import Format

The import file format that FieldTrip expects from an agency is a plain text file with Waypoint records (instances) separated by line (e.g one per line) and values separated by commas. Commas in a value (rather than as a record separator) are escaped with the backslash (‘\’) character (e.g. “\,and then”). White space between commas is ignored. Lines beginning with # are ignored as comments. Each Waypoint record contains 3 or optionally 4 values:

1. latitude - latitude of a Waypoint

2. longitude – longitude of waypoint

3. habitat type – a text string with the agencies coarse description of the habitat type
4. [name] – optionally, a friendly string describing the waypoint
7.4.1.2 Export Format

The export format follows the same comma separated conventions as (7.4.1.1). It will output 44 or more values per record. The export record can have a list of biologist’s names appended to the end of the record (separated by commas of course). So the record size is variable after the 44thth entry.

1. lattitude – Lattitude of Waypoint
2. longitude – Longitude of Waypoint
3. habitat type – Agency’s coarse description
4. waypoint name – Waypoint’s textual name
5. date stamp – The finish time of the PlantPatch
6. plant patch name – The textual name of the PlantPatch
7. plant patch species – The species of the PlantPatch
8. cyg1dist – The CYG’s bases’ distance from the random point at that level

9. cyg1length – The CYG’s length from base to tip

10. cyg1diameter – The CYG’s base diameter

11. cyg1level – The CYG’s depth level

12. cyg2dist

13. cyg2length

14. cyg2diameter

15. cyg2level

16. cyg3dist

17. cyg3length

18. cyg3diameter

19. cyg3level

20. cyg4dist

21. cyg4length

22. cyg4diameter

23. cyg4level

24. cyg5dist

25. cyg5length

26. cyg5diameter

27. cyg5level

28. cyg6dist

29. cyg6length

30. cyg6diameter

31. cyg6level

32. cyg7dist

33. cyg7length

34. cyg7diameter

35. cyg7level

36. cyg8dist

37. cyg8length

38. cyg8diameter

39. cyg8level

40. cyg9dist

41. cyg9length

42. cyg9diameter

43. cyg9level

44. biologists name1
45. [biologists name2]

46. […]
7.4.1.3 Save File Format

The save file format will use Microsoft’s native serialize and deserialize methods. This will allow the application to save the model exactly as it is in memory. The View and Controller will be volatile. The View and Controller will initialize their states when a serialized model is loaded.
PAGE
November 18, 2005

