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In this Letter, we study stationary bump solutions in a pair of interacting excitatory-inhibitory (E-I)

neural fields in one dimension. We demonstrate the existence of localized bump solutions of persistent

activity that can be maintained by the pair of interacting layers when a stationary bump is not supported by

either layer in isolation—a scenario which may be relevant as a mechanism for the persistent activity

associated with working memory in the prefrontal cortex and may explain why bumps are not seen in

in vitro slice preparations. Furthermore, we describe a new type of stationary bump solution arising from a

pitchfork bifurcation which produces a stationary bump in each layer with a spatial offset that increases

with the bifurcation parameter.
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Delayed-response task experiments in awake monkeys
have identified persistent activity in the prefrontal cortex as
a neural correlate of spatial working memory [1–3].
Different neurons in the prefrontal cortex are capable of
encoding and storing different spatial locations to form a
mnemonic map of the visual field [2]. Stationary bumps
arising in excitatory-inhibitory neural fields or Wilson-
Cowan models [4–6] have been used to model persistent
activity in the prefrontal cortex [6–9]. Though such studies
demonstrate that single-layer neural fieldmodels are capable
of supporting localized persistent activity, in vitro slice
preparations of cortical tissue tend to exhibit more dynamic
and transitory behavior and have not been shown to support
bumplike persistent activity. While this may be the conse-
quence of important connections being disrupted or de-
stroyed in the slice preparation, it is plausible that the
persistent activity is alternatively maintained by the interac-
tion between two (or more) reciprocally connected layers or
brain regions. Indeed, other brain regions exhibit persistent
activity concurrently during the delayed-response tasks, e.g.,
posterior parietal cortex and thalamus [10,11], and both form
reciprocal connections with prefrontal cortex.

Hence, one significant result of this Letter is to demon-
strate that a stable stationary bump of activity can be
supported by a pair of interacting neural field layers
when each layer in isolation does not support a stable
bump. We briefly introduce a model for an interacting
pair of E-I neural field layers as illustrated in Fig. 1:

E-I Layer I:

�e@tueþue¼wloc
ee �feðueÞ�wloc

ei �fiðuiÞþw
lay
ee �feðveÞ;

�i@tuiþui¼wloc
ie �feðueÞ�wloc

ii �fiðuiÞþwlay
ie �feðveÞ;

E-I Layer II:

�e@tveþve¼wloc
ee �feðveÞ�wloc

ei �fiðviÞþwlay
ee �feðueÞ;

�i@tviþvi¼wloc
ie �feðveÞ�wloc

ii �fiðviÞþwlay
ie �feðueÞ;

where w � fðuÞ ¼ R
R wðx� yÞf½uðy; tÞ�dy.

Neural fields are pattern-forming systems composed of
nonlocal integrodifferential equations that share similar
behavior with reaction-diffusion equations [4–6]. We as-
sume the distance-dependent synaptic weight functions
wl

uv for u; v 2 fe; ig and l 2 floc; layg are even-symmetric
and homogeneous (i.e., translationally invariant) in each
one-dimensional layer. The layers have identical local
connections wloc

uv and reciprocally symmetric interlayer

connections w
lay
ue that project only from the excitatory

populations. The interlayer synaptic coupling determines
a relationship between the coordinate systems for each
layer; we define a universal coordinate system for both
layers (i) using the local connections to determine the
length scale in each layer and (ii) using the center point
of the even-symmetric interlayer weight functions to iden-
tify the origin in layer II based on the connections to the
origin in layer I and vice versa.

FIG. 1. A network composed of an interacting pair of
excitatory-inhibitory (E-I) neural field layers. The E-I subnet-
works interact through reciprocally symmetric interlayer synap-

tic interactions w
lay
ee , w

lay
ie mediated by the excitatory populations

ue, ve within each subnetwork. For simplicity, only connections
from layer II to layer I are shown.
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We define the term syntopic bump (“syn”þ “topos”
meaning ‘‘together in place’’) to refer to the case of a
stationary bump in each E-I subnetwork if the two bumps
share the same center in the universal coordinate system.
The syntopic bump can undergo a bifurcation to a new type
of stationary bump that we call an allotopic bump, which is
composed of a stationary bump in each layer with centers
that are spatially offset. As the analysis of the full model is
cumbersome, the results will appear instead in a forth-
coming paper [12] with some of the results discussed
briefly below. In this Letter, we concentrate on an impor-
tant reduction wherein each E-I layer in Fig. 1 is simplified
to an Amari neural field [5,9] as illustrated in Fig. 2. The
two models exhibit related structure and behavior, includ-
ing syntopic and allotopic bumps (see Fig. 3).

The model for an interacting pair of identical Amari
neural field layers is given by

�@tu ¼ �uþ wloc �Hðu� �Þ þ wI
lay �Hðv� �Þ; (1)

�@tv ¼ �vþ wloc �Hðv� �Þ þ wII
lay �Hðu� �Þ: (2)

H is the Heaviside function with a firing threshold �. The
local connections (wloc) within each layer are given by a
Mexican hat synaptic weight function and the interlayer
connections (wlay) are taken to be reciprocally symmetric

so that wII
lay � wI

lay � wlay. Without loss of generality we

take � ¼ 1, and, for calculations, we use general synaptic
weight functions of the form

wlðxÞ ¼ 1

2

Ae
l

�e
l

e�ðjxj=�e
l
Þ � 1

2

Ai
l

�i
l

e�ðjxj=�i
l
Þ; l2 floc; layg:

The reduction from an E-I layer to an Amari layer can be
validated by assuming (i) the inhibitory population is in
quasisteady state (�i ¼ 0), (ii) no inhibitory-to-inhibitory
coupling (wloc

ii ¼ 0), (iii) a linear firing rate function for
the inhibitory population [fiðuiÞ ¼ ui] and a Heaviside
firing rate function for the excitatory population [feðueÞ ¼
Hðue � �Þ] [9]. Under these assumptions, the pair of in-
teracting E-I layers analogously reduces to (1) and (2) with

wloc ¼ wloc
ee � wloc

ei � wloc
ie and wlay ¼ w

lay
ee � wloc

ei � wlay
ie .

We analyze the existence and linear stability of a sta-
tionary syntopic bump which is composed of bumps
uðx; tÞ ¼ UsðxÞ in layer I and vðx; tÞ ¼ V sðxÞ in layer II,
withV sðxÞ � UsðxÞ. This represents a stationary bump in
each layer with identical spatial profiles that are localized
about the same center in the universal coordinate system.
The spatial profileUsðxÞ of the syntopic bump must satisfy
threshold conditions Usð0Þ ¼ UsðaÞ ¼ �, where a is the
syntopic bump width, and we require the bump in each
layer to be superthreshold [UsðxÞ> �] over the spatial
region (0, a) and be subthreshold [UsðxÞ< �] otherwise
with UsðxÞ ! 0 as x ! �1. The stationary syntopic
bump ðu; vÞT ¼ ðUs;UsÞT can be expressed as

U sðxÞ¼ ½WlocðxÞ�Wlocðx�aÞ�þ½WlayðxÞ�Wlayðx�aÞ�
whereWlðxÞ �

R
x
0 wlðyÞdy for l 2 floc; layg. The threshold

conditionUsð0Þ ¼ UsðaÞ ¼ � yields a compatibility con-
dition that determines the syntopic bump width a

� ¼ WlocðaÞ þWlayðaÞ (3)

guaranteeing the existence of a stationary syntopic bump,
provided the assumptions on Us are satisfied.
We highlight an important way in which a syntopic

bump can emerge in a pair of identical Amari layers. If
the local connections wloc are of Mexican hat type (e.g.,
�i

loc >�e
loc and Ai

loc < Ae
loc) but, alone, do not support a

stationary bump [i.e., WlocðaÞ< � for all a 2 ð0;1Þ], the
inclusion of excitatory (wlay > 0) interlayer connections

can generate a stable stationary syntopic bump through a
saddle-node bifurcation as illustrated in Fig. 4. There is
bistability between the syntopic bump and the spatially
homogeneous rest state. In numerical simulations, when
the interlayer connections are removed, the activity rapidly
approaches the rest state. We also mention that it is addi-
tionally possible to generate stable syntopic bumps with
excitatory interlayer connections even when the extent of
the local excitatory connections exceeds the local inhibi-
tory connections (i.e., not a Mexican hat) [12].

loc

FIG. 2. A pair of interacting Amari neural field layers in which
the even-symmetric interlayer synaptic coupling (wI

lay, wII
lay)

determines a universal coordinate system for the two layers.

FIG. 3 (color online). Left: Stationary syntopic bump profile
Us ¼ V s in the pair of symmetrically interacting (wI

lay �
wII

lay � wlay) Amari layers where Us is the stationary bump in

layer I and V s is the stationary bump in layer II. Right:
Stationary allotopic bump with U0 denoting the stationary
bump in layer I and V 0 denoting the stationary bump in layer
II. Both bumps have width b and are separated by a distance c.

PRL 107, 228103 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

25 NOVEMBER 2011

228103-2



To study the linear stability of the syntopic bump, we
consider the evolution of arbitrary, small perturbations of
the solution ðUs;V sÞT , whereV sðxÞ ¼ UsðxÞ, by setting

uðx; tÞ ¼ UsðxÞ þ ’ðxÞe�t; vðxÞ ¼ V sðxÞ þ c ðxÞe�t

in the linearization about the syntopic bump which leads to
the spectral problem

�’ ¼ �’þN loc’þN layc ;

�c ¼ �c þN locc þN lay’;
(4)

where N loc and N lay are given for l 2 floc; layg by

N l�ðxÞ ¼
Z
R
wlðx� yÞ�½UsðyÞ � ���ðyÞdy

¼ wlðxÞ
jU0

sð0Þj�ð0Þ þ wlðx� aÞ
jU0

sðaÞj �ðaÞ;

with U0
sð0Þ ¼ �U0

sðaÞ> 0. The essential spectrum does
not cause instability; the point spectrum is found by setting
x ¼ 0 and x ¼ a in (4) and solving ðM� IÞv ¼ �v

M ¼
ŵlocð0Þ ŵlocðaÞ ŵlayð0Þ ŵlayðaÞ
ŵlocðaÞ ŵlocð0Þ ŵlayðaÞ ŵlayð0Þ
ŵlayð0Þ ŵlayðaÞ ŵlocð0Þ ŵlocðaÞ
ŵlayðaÞ ŵlayð0Þ ŵlocðaÞ ŵlocð0Þ

2
6664

3
7775;

v ¼ ½’ð0Þ; ’ðaÞ; c ð0Þ; c ðaÞ�T;

where ŵlðxÞ ¼ wlðxÞ=jU0
sð0Þj, for l 2 floc; layg. This ma-

trix equation determines the eigenvalues � and the associ-
ated eigenfunctions ð’ðxÞ; c ðxÞÞT by using v in (4).
Using a similarity transformation Q�1ðM� IÞQ ¼ �,

(M� I) is similar to the block diagonal matrix �

� ¼ �þ � I2 0
0 �� � I2

� �
;

where I2 is the 2� 2 identity matrix and

�� ¼ ŵlocð0Þ � ŵlocðaÞ ŵlayð0Þ � ŵlayðaÞ
ŵlayð0Þ � ŵlayðaÞ ŵlocð0Þ � ŵlocðaÞ

" #
:

Setting � ¼ jU0
sð0Þj, the resulting four eigenvalues are

�þþðaÞ ¼
2

�
½wlocðaÞ þ wlayðaÞ�;

�þ�ðaÞ ¼ 2

�
½wlocðaÞ � wlayð0Þ�;

���ðaÞ ¼ � 2

�
½wlayð0Þ � wlayðaÞ�

and the zero eigenvalue ��þðaÞ ¼ 0which reflects the trans-
lation invariance of the syntopic bump.
Interestingly, a special pitchfork bifurcation occurs

when a syntopic bump loses stability as eigenvalue ���ðaÞ
increases through 0, i.e., if wlayð0Þ ¼ wlayðaÞ. This can

occur when wlayðxÞ transitions from having a single peak

at x ¼ 0 to having an even-symmetric double peak with a
local minimum at x ¼ 0. The bifurcating solution reflects
the geometry of the associated spatial eigenmode which
corresponds to a lateral perturbation to one side of the
stationary bump in one layer and to the opposite side of
the stationary bump in the other layer [12]. Indeed, in
neural field equations, the bifurcating solution commonly
reflects a structure that is geometrically similar to the
destabilizing eigenmode [13–15].
We call the bifurcating solution ðu; vÞT ¼ ðU0;V 0ÞT a

stationary allotopic bump (“allo” þ “topos” meaning
“other” þ “place”) as it is composed of a stationary
bumpU0 in layer I andV 0 in layer II which are separated
by a distance c that depends on the bifurcation parameter
(see Fig. 3 and 5). Because of symmetry conditions,V 0 is
a reflection and a translation of U0 expressed as

V 0ðxÞ ¼ U0½�ðx� c� bÞ�:
b denotes the width of the spatial region where each bump
is above threshold [i.e., U0ðxÞ> � for x 2 ð0; bÞ and
V 0ðxÞ> � for x 2 ðc; bþ cÞ or with U0 and V 0

switched]. Accordingly, the threshold conditions that de-
termine the existence of an allotopic bump are

� ¼ WlocðbÞ �WlayðcÞ þWlayðcþ bÞ;
� ¼ WlocðbÞ þWlayðcÞ �Wlayðc� bÞ: (5)

FIG. 4. Plots of [WlocðaÞ þWlayðaÞ] in (3) for various values of
Ae
lay with Ai

lay ¼ 0. In the absence of interlayer connections

(Ae
lay ¼ 0), the local connections within each layer do not sup-

port a stationary bump [since WlocðaÞ< � for a > 0]. Increasing
the excitatory interlayer coupling strength Ae

lay > 0 leads to a

saddle-node bifurcation of syntopic bumps and, for the following
parameters, the larger syntopic bump that emerges is stable
(from linear stability analysis). Fixed parameters are Ae

loc ¼
Ai
loc ¼ �e

loc ¼ 1, �i
loc ¼ 2, �e

lay ¼ 0:5, � ¼ 0:2
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In Fig. 5, we solve (3) and (5) for the existence of a pair of
stationary syntopic bumps, each undergoing a pitchfork
bifurcation that gives rise to an allotopic bump. Linear
stability analysis of the allotopic bump indicates the bifur-
cations are supercritical in agreement with the geometry of
the direction of bifurcation in Fig. 5.

We studied the existence of stationary periodic bumps
with period L and analyzed their linear stability with
respect to the class of L-periodic perturbations. Inte-
restingly, a third type of spatially periodic, stationary so-
lution can exist in which the periodic bump in one layer is
shifted by half of a period (L=2) with respect to the
periodic bump in the other layer, and we refer to it as the
antisyntopic periodic bump since it is the spatial analogue
of the antisynchronous solution in coupled-oscillator the-
ory. The bifurcation structure is similar to that in Fig. 5,
however, the difference is that the curve of allotopic peri-
odic bumps terminates at a pitchfork bifurcation with a
curve of antisyntopic periodic bumps, thereby stabilizing
the remaining branch of antisyntopic bumps [12].

We additionally investigated the existence and linear
stability of stationary syntopic bumps for reciprocally
asymmetric interlayer synaptic coupling (wI

lay � wII
lay)

which causes the bump in each layer generically to have
different widths (but the same centers). Interestingly, while

asymmetric interlayer coupling supports stationary syn-
topic bumps, loss of stability of the syntopic bump through
the equivalent of eigenvalue ��� in this case is found to give
rise to a traveling allotopic bump in numerical simulations.
From speed 0, the traveling wave speed increases with the
disparity induced by the asymmetry in the interlayer con-
nections [12].
In the interacting pair of E-I neural fields, we have

investigated the existence and stability of solitary and
periodic syntopic bumps in the case of excitatory interlayer
connections. Two important results are that it is possible
(i) to generate a stable stationary syntopic bump even if
each E-I layer does not support a stationary bump and
(ii) to stabilize a syntopic bump even if the spatial extent
of the excitatory local connections within each layer ex-
ceed that of the inhibitory local connections. When a
supercritical Hopf bifurcation occurs with respect to the
pair of eigenvalues analogous to �þþ, destabilization of the
syntopic bump leads to time-periodic breathers simulta-
neously in each E-I network. Note, in [7,9], it was shown
that in the single E-I layer, a stable stationary bump can
destabilize in a Hopf bifurcation if the dynamics of the
inhibitory population are sufficiently slow (�i=�e > �crit).
In the dual E-I layers, for the parameter region we ex-
plored, �crit was found to vary from 1 to 40. It is also
possible to generate a stationary allotopic bump by desta-
bilizing the syntopic bump with respect to the equivalent of
eigenvalue ���, and the spatial offset similarly varies with
the bifurcation parameter. Syntopic bumps with different
widths, traveling waves, and more complex spatiotemporal
phenomena are also found [12].
Finally, as the cerebral cortex is a layered structure, an

important extension is to consider two-dimensional spatial
domains [14,15] to study synaptic interactions between
two interconnected layers of neural tissue which can be
reasonably approximated as two dimensional.
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