Solving an equation (with only a single variable) is the process of reversing each arithmetic operation one at a time. The order of steps is determined by the usual order of operations.

\[
7 - 5 \left(\frac{11 + 3x}{4} \right) = 13. \quad \text{Starting with } x \text{ we multiply by 3, add 11, divide by 4, multiply by -5, and add 7.}
\]

\[-7 + 7 - 5 \left(\frac{11 + 3x}{4} \right) = -7 + 13. \quad \text{The last operation is adding 7.}
\]

\[-5 \left(\frac{11 + 3x}{4} \right) = 6. \quad \text{Starting with } x \text{ we multiply by 3, add 11, divide by 4, and multiply by -5.}
\]

\[-\frac{1}{5} \cdot -5 \left(\frac{11 + 3x}{4} \right) = -\frac{1}{5} \cdot 6. \quad \text{The last operation is multiplying by } -5.
\]

\[
4 \cdot \frac{11 + 3x}{4} = 4 \cdot -\frac{6}{5}. \quad \text{Starting with } x \text{ we multiply by 3, add 11, and divide by 4.}
\]

\[
11 + 3x = -\frac{24}{5}. \quad \text{The last operation is dividing by 4.}
\]

\[-11 + 11 + 3x = -11 + -\frac{24}{5}. \quad \text{The last operation is adding by 11.}
\]

\[
3x = -\frac{55}{5} - \frac{24}{5}. \quad \text{Starting with } x \text{ we multiply by 3.}
\]

\[
3x = -\frac{79}{5}. \quad \text{The last operation is multiplying by 3.}
\]

\[
x = -\frac{79}{15}.
\]