Skip to main content
Logo image

Section 5.1 Discovering Graphs

Definitions are typically constructed after we work with new objects. The definition is constructed to match the properties we have observed and need. In this section we will practice this by developing a definition for a type of object known as a graph.
(a) Example
(b) Example
(c) Example
(d) Example
(e) Example
(f) Example
(g) Example
(h) Example
Figure 5.1.1. Each of these is a graph
(a) Example
(b) Example
(c) Example
(d) Example
(e) Example
(f) Example
(g) Example
Figure 5.1.2. None of these is a graph
\begin{align*} P \amp =\{p_1,p_2,p_3\}\\ Q \amp =\{q_1,q_2,q_3\}\\ q_1 \amp = \{p_1,p_2\}\\ q_2 \amp = \{p_1,p_3\}\\ q_3 \amp = \{p_2,p_3\} \end{align*}
(a) Example
\begin{align*} P \amp =\{p_1,p_2,p_3,p_4\}\\ Q \amp =\emptyset \end{align*}
(b) Example
\begin{align*} P \amp =\{p_1,p_2,p_3,p_4\}\\ Q \amp =\{q_1,q_2\}\\ q_1 \amp = \{p_1,p_3\}\\ q_2 \amp = \{p_2,p_4\} \end{align*}
(c) Example
\begin{align*} P \amp =\{p_1,p_2,p_3,p_4,p_5\}\\ L \amp =\{\ell_1,\ell_2,\ell_3,\ell_4,\ell_5,\ell_6\}\\ \ell_1 \amp = \{p_2,p_3\}\\ \ell_2 \amp = \{p_1,p_4\}\\ \ell_3 \amp = \{p_4,p_5\}\\ \ell_4 \amp = \{p_1,p_5\}\\ \ell_5 \amp = \{p_2,p_4\}\\ \ell_6 \amp = \{p_2,p_5\} \end{align*}
(d) Example
\begin{align*} V \amp =\{c,d,e,f\}\\ E \amp =\{\{c,d\}, \{d,e\}, \{e,f\},\\ \amp \{c,f\}\} \end{align*}
(e) Example
\begin{align*} V \amp =\{v_1,v_2,v_3,v_4\}\\ E \amp =\{\{v_1,v_2\}, \{v_1,v_3\}, \\ \amp \{v_2,v_3\}, \{v_2,v_4\}\} \end{align*}
(f) Example
\begin{align*} P \amp =\{p,q,r\}\\ Q \amp = \{ \{p,q\} \} \end{align*}
(g) Example
\begin{align*} P \amp =\{q,r,s,t\}\\ Q \amp =\{\{q,r\}, \{r,t\}, \{q,t\}, \{r,s\}\} \end{align*}
(h) Example
Figure 5.1.5. Each of these is a graph.
\begin{align*} P \amp =\{p_1,p_2,p_3\}\\ Q \amp =\{q_1,q_2\}\\ q_1 \amp = \{p_1,p_2\}\\ q_2 \amp = \{p_3,p_4\} \end{align*}
(a) Example
\begin{align*} P \amp =\{p_1,p_2\}\\ Q \amp =\{q_1,q_2\}\\ q_1 \amp = \{p_1,p_2\}\\ q_2 \amp = \{p_1,p_2\} \end{align*}
(b) Example
\begin{align*} P \amp =\{p_1,p_2,p_3\}\\ Q \amp =\{q_1,q_2,q_3\}\\ q_1 \amp = (p_1,p_2)\\ q_2 \amp = (p_1,p_3)\\ q_3 \amp = (p_2,p_3) \end{align*}
(a) Example
\begin{align*} V \amp =\{x,y,z\}\\ E \amp =\{f,g,h\}\\ f \amp = (x,y)\\ g \amp = (y,x)\\ h \amp = (y,z) \end{align*}
(b) Example
\begin{align*} P \amp =\emptyset\\ Q \amp =\emptyset \end{align*}
(a) Example
\begin{align*} P \amp =\{q,r,s,t\}\\ Q \amp =\{\{q,r\}, \{r,t\}, \{s\} \} \end{align*}
(b) Example
\begin{align*} V \amp =\{p_1,p_2,\ldots,p_n,\ldots\}\\ E \amp =\{\{p_1,p_2\}, \{p_2,p_4\}, \{p_1,p_3\}, \{p_4,p_6\}\} \end{align*}
(a) Example
\begin{align*} P \amp =\{p_1,p_2,p_3\}\\ Q \amp =\{q_1,q_2,q_3\}\\ q_1 \amp = \{p_1,p_2\}\\ q_2 \amp = \{p_1,p_3\} \end{align*}
(b) Example
Figure 5.1.6. None of these is a graph.

Checkpoint 5.1.7.

Based on the examples in FigureΒ 5.1.5 and FigureΒ 5.1.6 determine which of the following are graphs.
  1. \begin{align*} P \amp =\{p_1,p_2,p_3\}\\ Q \amp =\{q_1\}\\ q_1 \amp = \{p_1,p_3\} \end{align*}
  2. \begin{align*} P \amp =\{p_1,p_2,p_3\}\\ Q \amp =\{q_1,q_2\}\\ q_1 \amp = \{p_1,p_2\} \end{align*}
  3. \begin{align*} V \amp =\{v_1,v_2,\ldots,v_n,\ldots\}\\ E \amp =\{e_1,e_2,\ldots,e_n,\ldots\}\\ e_1 \amp = (v_1,v_2)\\ \vdots\\ e_n \amp = (v_n,v_{n+1})\\ \vdots \end{align*}
  4. \begin{align*} P \amp =\{p,q,r\}\\ Q \amp =\{t,u,v\}\\ t \amp = \{p,q\}\\ u \amp = \{p,r\}\\ v \amp = \{q,r\} \end{align*}
  5. \begin{align*} P \amp =\{p_1,p_2,p_3\}\\ Q \amp =\emptyset \end{align*}
  6. \begin{align*} V \amp =\{u_1,u_2,u_3,u_4\}\\ E \amp =\{(u_1,u_2), (u_2,u_1),\\ \amp (u_3,u_4)\} \end{align*}
  7. \begin{align*} V \amp =\{v_1,v_2,v_3\}\\ E \amp =\{\{v_1,v_2\}, \{v_1,v_3\}, \{v_3\}\} \end{align*}
  8. \begin{align*} P \amp =\{p,q,r,s\}\\ Q \amp =\{\{p,q\}, \{p,r\}, \{p,s\},\\ \amp \{q,r\}, \{q,s\}, \{r,s\}\} \end{align*}