Example 1.6.1. Evaluate a simple limit using properties.
\begin{equation*}
\lim_{x \rightarrow 2} \frac{3x^2+2}{x^3-x}
\end{equation*}
Solution.
\begin{align*}
\lim_{x \rightarrow 2} \frac{3x^2+2}{x^3-x} = \amp \text{ using the quotient property} \\
\frac{\lim_{x \rightarrow 2} 3x^2+2}{\lim_{x \rightarrow 2} x^3-x} = \amp \text{ using the summation property} \\
\frac{\lim_{x \rightarrow 2} 3x^2+ \lim_{x \rightarrow 2} 2}{\lim_{x \rightarrow 2} x^3 + \lim_{x \rightarrow 2} -x} = \amp \text{ using the scalar property} \\
\frac{3\lim_{x \rightarrow 2} x^2+ \lim_{x \rightarrow 2} 2}{\lim_{x \rightarrow 2} x^3 - \lim_{x \rightarrow 2} x} = \amp \text{ using the exponent property} \\
\frac{3\left(\lim_{x \rightarrow 2} x\right)^2+ \lim_{x \rightarrow 2} 2}{\left(\lim_{x \rightarrow 2} x\right)^3 - \lim_{x \rightarrow 2} x} = \amp \text{ known limits} \\
\frac{3(2)^2+2}{2^3-2} = \frac{7}{3}.
\end{align*}