Theorem 1.5.2. Limit of \(x\).
\(x\) goes where it goes.
\begin{equation*}
\lim_{x \to a} x = a.
\end{equation*}
|
\begin{equation*}
\lim_{x \to \infty} x = \infty
\end{equation*}
|
\begin{equation*}
\lim_{x \to -\infty} x = -\infty
\end{equation*}
|
\begin{equation*}
\lim_{x \to a} k = k.
\end{equation*}
|
\begin{equation*}
\lim_{x \to \infty} k = k.
\end{equation*}
|
\begin{equation*}
\lim_{x \to 0^+} \frac{1}{x} = \infty.
\end{equation*}
|
\begin{equation*}
\lim_{x \to 0^-} \frac{1}{x} = -\infty.
\end{equation*}
|
\begin{equation*}
\lim_{x \to 0} \frac{1}{x^2} = \infty.
\end{equation*}
|
\begin{equation*}
\lim_{x \to \infty} \frac{1}{x} = 0.
\end{equation*}
|
Limit of Scalar Product |
\begin{equation*}
\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)
\end{equation*}
|
Limit of Sum |
\begin{equation*}
\lim_{x \to a} [ f(x)+g(x) ] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)
\end{equation*}
|
Limit of Product |
\begin{equation*}
\lim_{x \to a} [ f(x)g(x) ] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)
\end{equation*}
|
Limit of Quotient |
\begin{equation*}
\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}
\end{equation*}
|
Limit of Composition |
\begin{equation*}
\lim_{x \to a} f(g(x)) = f\left( \lim_{x \to a} g(x) \right)
\end{equation*}
|
Limit of Exponents |
\begin{equation*}
\lim_{x \to a} f(x)^r = \left( \lim_{x \to a} f(x) \right)^r
\end{equation*}
|
\begin{equation*}
\lim_{x \to a} \cos(x) = \cos(a).
\end{equation*}
|
Works for all trig |
\begin{equation*}
\lim_{x \to \infty} \cos(x) \text{ undefined}
\end{equation*}
|
True for all trig |
\begin{equation*}
\lim_{x \to a} e^x= e^a.
\end{equation*}
|
Works for all bases |
\begin{equation*}
\lim_{x \to \infty} e^x= \infty.
\end{equation*}
|
Works for all bases |
\begin{equation*}
\lim_{x \to -\infty} e^x= 0.
\end{equation*}
|
Works for all bases |
\begin{equation*}
\lim_{x \to a} \ln(x)= \ln(a).
\end{equation*}
|
Works for all bases |
\begin{equation*}
\lim_{x \to \infty} \ln(x)= \infty.
\end{equation*}
|
Works for all bases |
\begin{equation*}
\lim_{x \to 0^+} \ln(x)= -\infty.
\end{equation*}
|
Works for all bases |