Skip to main content
Logo image

Section 5.9 Stoke’s Theorem

Subsection 5.9.1 Statement

The following is an integral identity that is useful for some calculations.

Activity 79.

(a)
Compare Green’s and Stoke’s Theorems below.
\begin{align*} \oint_C \vec{F} \cdot d\vec{r} = & \displaystyle \dint_D \left( \frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \; dx \: dy. & \text{Green's Theorem}\\ \oint_C \vec{F} \cdot d\vec{r} = & \displaystyle \dint_D \mbox{curl } \vec{F} \cdot \vec{n} \; dS. & \text{Stoke's Theorem} \end{align*}

Exercises 5.9.2 Exercises

1.

Calculate the effect of the vector field \(F(x,y,z)=\langle yz,xz,0 \rangle\) on the outer edge of the spiral ramp \(S(r,\theta)=(r\cos\theta,r\sin\theta,\theta)\) with \(r \in [0,10]\) and \(\theta \in [0,2\pi].\) The parameterized path is \(\vec{r}(\theta)=(10\cos\theta,10\sin\theta,\theta).\)

2.

Use Stoke’s Theorem to calculate the effect.