Skip to main content
Logo image

Section 2.2 Arithmetic Theorems

We will
  • learn a list of algebraic properties of vectors and matrices,
  • identify these by name (learned in high school)
  • prove a few of these properties.

Subsection 2.2.1 Algebraic Properties

In this section we want to connect properties of vectors to similar looking properties of real numbers we already know.

Checkpoint 2.2.1.

Select a name to match each property. Be careful to distinguish between scalar and vector. For example, \(\vec{u}+\vec{v} = \vec{v}+\vec{u}\) is vector additive commutativity.
  • \(\displaystyle (\vec{u}+\vec{v})+\vec{w} = \vec{u}+(\vec{v}+\vec{w}). \)
  • \(\displaystyle \vec{u}+\vec{0} = \vec{0}+\vec{u} = \vec{u}. \)
  • \(\displaystyle \vec{u}+(\vec{-u}) = (\vec{-u})+\vec{u} = \vec{0}. \)
  • \(\displaystyle c(\vec{u}+\vec{v}) = c\vec{u}+c\vec{v}. \)
  • \(\displaystyle (c+d)\vec{u} = c\vec{u}+d\vec{u}. \)
  • \(\displaystyle c(d\vec{u}) = (cd)\vec{u}. \)
  • \(1\vec{u}=\vec{u}\text{.}\)
  • Commutative
  • Associative
  • Distributive
  • Inverse

Checkpoint 2.2.2.

Select a name for each property. Be careful to distinguish between scalar and matrix.
  • \(\displaystyle A+B = B+A. \)
  • \(\displaystyle (A+B)+C = A+(B+C). \)
  • \(\displaystyle A+0 = 0+A = A. \)
  • \(\displaystyle A+(-A) = (-A)+A = 0. \)
  • \(\displaystyle r(A+B) = rA+rB. \)
  • \(\displaystyle (r+s)A = rA+sA. \)
  • \(\displaystyle r(sA) = (rs)A. \)
  • \(\displaystyle 1A = A. \)
  • Commutative
  • Associative
  • Distributive
  • Inverse

Checkpoint 2.2.3.

Select a name for each property. Be careful to distinguish between scalar, vector, and matrix.
  • \(\displaystyle A(\vec{u}+\vec{v}) = A\vec{u}+A\vec{v}. \)
  • \(\displaystyle A(c\vec{u}) = c(A\vec{u}). \)
  • Commutative
  • Associative
  • Distributive
  • Inverse

Checkpoint 2.2.4.

Select a name for each property. No two have the exact same description: be precise! The last item will be explained in a future lesson.
  • \(\displaystyle A(BC)=(AB)C. \)
  • \(\displaystyle A(B+C)=AB+AC. \)
  • \(\displaystyle (B+C)A=BA+CA. \)
  • \(\displaystyle r(AB)=(rA)B=A(rB). \)
  • \(\displaystyle I_mA=A=AI_m. \)
  • Commutative
  • Associative
  • Distributive
  • Inverse

Subsection 2.2.2 Proofs

Proof.

\begin{align*} c(\vec{u}+\vec{v}) = & c([u_1, u_2, \ldots, u_n]+[v_1, v_2, \ldots, v_n]) \\ = & c([u_1+v_1, u_2+v_2, \ldots, u_n+v_n]) \\ & & \mbox{ definition of vector addition} \\ = & [c(u_1+v_1), c(u_2+v_2), \ldots, c(u_n+v_n)] \\ & & \mbox{ definition of scalar multiplication} \\ = & [cu_1+cv_1, cu_2+cv_2, \ldots, cu_n+cv_n] \\ & & \mbox{ property of real arithmetic} \\ = & [cu_1, cu_2, \ldots, cu_n]+[cv_1, cv_2, \ldots, cv_n] \\ & & \mbox{ definition of vector addition} \\ = & c[u_1, u_2, \ldots, u_n]+c[v_1, v_2, \ldots, v_n] \\ & & \mbox{ definition of scalar multiplication} \\ = & c\vec{u}+c\vec{v}. \end{align*}

Checkpoint 2.2.6.

Prove the following by doing the algebra steps.
  • \(\displaystyle \vec{u}+\vec{v} = \vec{v}+\vec{u}\)
  • \(\displaystyle (\vec{u}+\vec{v})+\vec{w} = \vec{u}+(\vec{v}+\vec{w}). \)
  • \(\displaystyle A(B+C)=AB+AC. \)