Activity 2.3.1.
\begin{equation*}
f( [x_1, x_2, x_3]^T) = [x_1+x_2,x_2+x_3,x_3+x_1]^T.
\end{equation*}
(a)
Evaluate the following: \(f([1,3,-2]),\) \(f([1,2,5]),\) \(-2f([1,3,-2]),\) \(3f([1,2,5]),\) \(f([1,3,-2])+f([1,2,5])\text{.}\)
(b)
Evaluate \(f[-2[1,3,-2])\) and \(f(3[1,2,5])\text{.}\)
(c)
Compare these two results to the first set. Conjecture a property of this function.
Solution.
\(f(a\vec{x})=af(\vec{x})\text{.}\)
(d)
Evaluate \(f([1,3,-2]+[1,2,5])\text{.}\)
(e)
Compare this result to the first set. Conjecture a property of this function.
Solution.
\(f(\vec{x}+\vec{y})=f(\vec{x})+f(\vec{y})\text{.}\)
These two properties define a linear transformation.