Skip to main content
Logo image

Section 2.1 Big Theorem

We will discover what the following have in common.
  • Existence of solutions to \(A\vec{x}=\vec{b}\text{.}\)
  • Spans of vectors
  • Linear independence
  • Inverse matrices
  • and more

Subsection 2.1.1 Similar Problems

The following problems will illustrate properties of systems of linear equations and related matrices that are essentially the same.

Checkpoint 2.1.1.

Determine which of the following augmented matrices (linear systems) have no, one, or multiple solutions. Explain why.
  • \(\displaystyle \left[ \begin{array}{rrr|r} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & 6 \end{array} \right] \)
  • \(\displaystyle \left[ \begin{array}{rrr|r} 1 & 0 & -3 & 2 \\ 0 & 1 & 6 & 11 \\ 0 & 0 & 0 & 0 \end{array} \right] \)
  • \(\displaystyle \left[ \begin{array}{rrr|r} 1 & 0 & -7 & 9 \\ 0 & 1 & -2 & 6 \\ 0 & 0 & 0 & 3 \end{array} \right] \)
  • \(\displaystyle \left[ \begin{array}{rrr|r} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -5 \\ 1 & 1 & 1 & 3 \end{array} \right] \)
  • \(\displaystyle \left[ \begin{array}{rrr|r} 1 & 0 & -3 & 2 \\ 0 & 1 & 6 & 11 \\ 1 & 1 & 3 & 13 \end{array} \right] \)
  • \(\displaystyle \left[ \begin{array}{rrr|r} 1 & 0 & -7 & 9 \\ 0 & 1 & -2 & 6 \\ 1 & 1 & -9 & 18 \end{array} \right] \)

Checkpoint 2.1.2.

For each of the following matrices determine which have solutions to \(A\vec{x}=\vec{b}\text{.}\) Determine which matrices have an inverse. Explain why they do or do not have an inverse.
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]\left[ \begin{array}{r} 2 \\ -5 \\ 6 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & -3 \\ 0 & 1 & 6 \\ 0 & 0 & 0 \end{array} \right]\left[ \begin{array}{r} 2 \\ 11 \\ 0 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & -7 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{array} \right]\left[ \begin{array}{r} 9 \\ 6 \\ 3 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{array} \right]\left[ \begin{array}{r} 2 \\ -5 \\ 3 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & -3 \\ 0 & 1 & 6 \\ 1 & 1 & 3 \end{array} \right]\left[ \begin{array}{r} 2 \\ 11 \\ 13 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & -7 \\ 0 & 1 & -2 \\ 1 & 1 & -9 \end{array} \right]\left[ \begin{array}{r} 9 \\ 6 \\ 18 \end{array} \right]\)

Checkpoint 2.1.3.

For each of the following matrices determine whether \((0,0,0)\) is the only solution to \(A\vec{x}=\vec{0}\text{.}\) Explain why or why not.
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & -3 \\ 0 & 1 & 6 \\ 0 & 0 & 0 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & -7 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & -3 \\ 0 & 1 & 6 \\ 1 & 1 & 3 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & -7 \\ 0 & 1 & -2 \\ 1 & 1 & -9 \end{array} \right]\)

Checkpoint 2.1.4.

For each of the following matrices determine whether \(A\vec{x}=\vec{b}\) has at least one solution for all \(\vec{b}\) (this means you can pick any \(\vec{b}\text{,}\) do not look for it below). Explain why or why not.
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & -3 \\ 0 & 1 & 6 \\ 0 & 0 & 0 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & -7 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & -3 \\ 0 & 1 & 6 \\ 1 & 1 & 3 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & -7 \\ 0 & 1 & -2 \\ 1 & 1 & -9 \end{array} \right]\)

Checkpoint 2.1.5.

For each of the following matrices determine whether the columns span \(\R^3\) (the set of all three entry vectors). Explain why or why not.
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & -3 \\ 0 & 1 & 6 \\ 0 & 0 & 0 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & -7 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & -3 \\ 0 & 1 & 6 \\ 1 & 1 & 3 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & -7 \\ 0 & 1 & -2 \\ 1 & 1 & -9 \end{array} \right]\)

Checkpoint 2.1.6.

For each of the following matrices determine whether the columns are linearly independent. Explain why or why not.
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & -3 \\ 0 & 1 & 6 \\ 0 & 0 & 0 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & -7 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & -3 \\ 0 & 1 & 6 \\ 1 & 1 & 3 \end{array} \right]\)
  • \(\displaystyle \left[ \begin{array}{rrr} 1 & 0 & -7 \\ 0 & 1 & -2 \\ 1 & 1 & -9 \end{array} \right]\)

Checkpoint 2.1.7.

If a matrix \(A\) has an inverse, will it be the identity matrix after row reduction?

Subsection 2.1.2 Big Theorem Begins

The following theorem will grow to encompass most of what you learn this semester.