Skip to main content
Logo image

Section 4.5 Rank

Goals.

We will consider various properties of dimensions of a row space including
  • which matrices have the same row spaces,
  • the comparative size of row and column spaces, and
  • the comparative size of row and null spaces.

Subsection 4.5.1 Row Spaces

Activity 4.5.1.

In this activity we will see how to write a simple and useful description of a given row space.
\begin{equation*} A=\left[ \begin{array}{*{4}{r}} 1 & 1 & 1 & 7 \\ 1 & 1 & 2 & 0 \\ 1 & 1 & 1 & 21 \\ -3 & -3 & -1 & -35 \\ \end{array} \right], \end{equation*}
\begin{equation*} B=\left[ \begin{array}{*{4}{r}} 1 & 1 & 1 & 2 \\ 2 & 2 & 3 & 4 \\ 3 & 3 & 2 & 7 \\ 0 & 0 & 2 & -2 \\ \end{array} \right]. \end{equation*}
\begin{equation*} C=\left[ \begin{array}{*{4}{r}} 1 & -2 & -4 & 4 \\ 2 & -3 & -5 & 11 \\ 3 & -5 & -9 & 16 \\ 2 & -2 & -2 & 15 \\ \end{array} \right]. \end{equation*}
(a)
Find bases for the row spaces of \(A\text{,}\) \(B\text{,}\) and \(C\) by row reducing the matrices. Use technology.
(b)
Compare the dimensions of these bases.
(c)
Compare the contents of these row spaces (do they share any vectors)?
(d)
If two matrices can be row reduced to the same matrix, what will be true about their row spaces?
(e)
If a matrix can be row reduced to the identity matrix, what is its row space?

Subsection 4.5.2 Column Spaces

Activity 4.5.2.

In this activity we notice which columns we can use for a basis of the column space.
\begin{equation*} A=\left[ \begin{array}{*{4}{r}} 1 & 1 & 1 & 7 \\ 1 & 1 & 2 & 0 \\ 1 & 1 & 1 & 21 \\ -3 & -3 & -1 & -35 \\ \end{array} \right], \end{equation*}
\begin{equation*} B=\left[ \begin{array}{*{4}{r}} 1 & 1 & 1 & 2 \\ 2 & 2 & 3 & 4 \\ 3 & 3 & 2 & 7 \\ 0 & 0 & 2 & -2 \\ \end{array} \right]. \end{equation*}
\begin{equation*} C=\left[ \begin{array}{*{4}{r}} 1 & -2 & -4 & 4 \\ 2 & -3 & -5 & 11 \\ 3 & -5 & -9 & 16 \\ 2 & -2 & -2 & 15 \\ \end{array} \right]. \end{equation*}
(a)
Find bases for the column spaces of \(A\text{,}\) \(B\) and \(C\) by column reducing. This is the same as row reducing the transpose which you can do with software.
Keep track of where each column of your basis was originally in the matrix.
(b)
Row reduce \(A\text{,}\) \(B\) and \(C\) using technology. Which columns have a pivot position?
(c)
Compare the locations of the columns with pivot positions to the columns that formed a basis from the column reduction.

Activity 4.5.3.

In this activity we compare the size of the row and column spaces for a given matrix.
\begin{equation*} A=\left[ \begin{array}{*{4}{r}} 1 & 1 & 1 & 7 \\ 1 & 1 & 2 & 0 \\ 1 & 1 & 1 & 21 \\ -3 & -3 & -1 & -35 \\ \end{array} \right], \end{equation*}
\begin{equation*} B=\left[ \begin{array}{*{4}{r}} 1 & 1 & 1 & 2 \\ 2 & 2 & 3 & 4 \\ 3 & 3 & 2 & 7 \\ 0 & 0 & 2 & -2 \\ \end{array} \right]. \end{equation*}
\begin{equation*} C=\left[ \begin{array}{*{4}{r}} 1 & -2 & -4 & 4 \\ 2 & -3 & -5 & 11 \\ 3 & -5 & -9 & 16 \\ 2 & -2 & -2 & 15 \\ \end{array} \right]. \end{equation*}
(a)
Find bases for the column spaces of \(A\text{,}\) \(B\) and \(C\text{.}\)
(b)
Compare the dimension of the column spaces of \(A\) and \(B\) to the dimension of their row spaces.
(c)
What can you conclude about the dimensions of the row and column spaces for any matrix? Note the result of Activity 4.5.2 provides a connection.

Subsection 4.5.3 Null Spaces

Activity 4.5.4.

In this activity we compare the dimensions of row and null spaces for a matrix.
\begin{equation*} A=\left[ \begin{array}{*{4}{r}} 1 & 1 & 1 & 7 \\ 1 & 1 & 2 & 0 \\ 1 & 1 & 1 & 21 \\ -3 & -3 & -1 & -35 \\ \end{array} \right], \end{equation*}
\begin{equation*} B=\left[ \begin{array}{*{4}{r}} 1 & 1 & 1 & 2 \\ 2 & 2 & 3 & 4 \\ 3 & 3 & 2 & 7 \\ 0 & 0 & 2 & -2 \\ \end{array} \right]. \end{equation*}
\begin{equation*} C=\left[ \begin{array}{*{4}{r}} 1 & -2 & -4 & 4 \\ 2 & -3 & -5 & 11 \\ 3 & -5 & -9 & 16 \\ 2 & -2 & -2 & 15 \\ \end{array} \right]. \end{equation*}
(a)
Find bases for the null spaces of \(A\text{,}\) \(B\text{,}\) and \(C\) using technology.
(b)
What is the maximum dimension for a row space for \(4 \times 4\) matrices? Call this \(n\text{.}\)
(c)
Compare the dimensions of the row and null spaces with \(n\text{.}\)
(d)
What can you conclude about the dimension of the row space and the dimension of the null space?

Subsection 4.5.4 Terminology

Definition 4.5.1. Rank.

The dimension of the row space of a matrix is called the rank of the matrix.
We should consider what these facts add to our big theorem.