Skip to main content
An IBL Introduction to Geometries
Mark A. Fitch
Contents
Search Book
close
Search Results:
No results.
Prev
Up
Next
\(\newcommand{\R}{\mathbb{R}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9} \newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}} \)
Front Matter
Colophon
About Mark A. Fitch
Acknowledgements
Preface
1
Completeness and Consistency
1.1
Finite Geometries
1.2
Completeness
1.3
Consistency
1.4
Explain and Apply
2
Neutral Geometry
2.1
Triangles
2.1.1
Basic Triangle Theorems
2.1.2
Triangle Congruence Theorems
3
Synthetic Euclidean Geometry
3.1
Equivalent Parallel Postulates
3.1.1
Preparation
3.1.2
Equivalency
3.2
Similarity
3.2.1
Preparation Theorems
3.2.2
Explore Similarity Theorems
3.2.3
Similarity Theorems
3.2.4
Extending Similarity
3.3
Concurrent
3.3.1
Explore
3.3.2
Prove
3.4
Constructions
3.4.1
Discover and Prove Construction
4
Transformational Geometry
4.1
Transformation
4.1.1
Planar Transformations
4.1.2
Isometry
4.1.3
Dilations
4.2
Analytic Transformational Geometry
4.3
Algebra of Transformations
4.3.1
Explore
4.3.2
Prove
4.4
Symmetries
4.4.1
Explore Symmetries
4.4.2
Explore Tesselations
4.4.3
Tesselation Images
5
Hyperbolic Geometry
5.1
Hyperbolic Geometry
5.2
A Model for Hyperbolic Geometry
5.3
Theorems of Hyperbolic Geometry
5.4
Parallels in Hyperbolic
6
Projective Geometry
6.1
Axioms for Projective Geometry
6.1.1
Motivating Illustration
6.1.2
Axioms for Projective Geometry
6.1.3
Duality
6.2
Perspectivities
Back Matter
A
Glossary
B
SMSG Axioms
Acknowledgements
Acknowledgements
This problem set has been developed with the assistance of many students from Introduction to Geometries at the University of Alaska Anchorage.